Twisted orbital integrals and irreducible components of affine Deligne–Lusztig varieties Article Swipe
Related Concepts
Zhou Rong
,
Yihang Zhu
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.4310/cjm.2020.v8.n1.a3
· OA: W2902135339
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.4310/cjm.2020.v8.n1.a3
· OA: W2902135339
We analyze the asymptotic behavior of certain twisted orbital integrals arising from the study of affine Deligne-Lusztig varieties. The main tools include the Base Change Fundamental Lemma and $q$-analogues of the Kostant partition functions. As an application we prove a conjecture of Miaofen Chen and Xinwen Zhu, relating the set of irreducible components of an affine Deligne-Lusztig variety modulo the action of the $\sigma$-centralizer group to the Mirkovic-Vilonen basis of a certain weight space of a representation of the Langlands dual group.
Related Topics
Finding more related topics…