Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1103/physrevlett.122.042501
· OA: W2914998265
We present an efficient Monte Carlo framework for perturbative calculations of infinite nuclear matter based on chiral two-, three-, and four-nucleon interactions. The method enables the incorporation of all many-body contributions in a straightforward and transparent way, and makes it possible to extract systematic uncertainty estimates by performing order-by-order calculations in the chiral expansion as well as the many-body expansion. The versatility of this new framework is demonstrated by applying it to chiral low-momentum interactions, exhibiting a very good many-body convergence up to fourth order. Following these benchmarks, we explore new chiral interactions up to next-to-next-to-next-to-leading order (N^{3}LO). Remarkably, simultaneous fits to the triton and to saturation properties can be achieved, while all three-nucleon low-energy couplings remain natural. The theoretical uncertainties of nuclear matter are significantly reduced when going from next-to-next-to-leading order to N^{3}LO.