Special values of adjoint L-functions and congruences for automorphic forms on GL(n) over a number field Article Swipe
Related Concepts
Mathematics
Automorphic form
Congruence relation
Pure mathematics
Algebraic number field
Automorphic L-function
Field (mathematics)
L-function
Function field
Function (biology)
Infinity
Combinatorics
Mathematical analysis
Meromorphic function
Evolutionary biology
Biology
Baskar Balasubramanyam
,
A. Raghuram
·
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1353/ajm.2017.0017
· OA: W2964176149
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1353/ajm.2017.0017
· OA: W2964176149
We prove an integrality result for the value at $s=1$ of the adjoint $L$-function associated to a cohomological cuspidal automorphic representation on ${\rm GL}(n)$ over any number field. We then show that primes (outside an exceptional set) dividing this special value give rise to congruences between automorphic forms. We also prove a non-vanishing property at infinity for the relevant Rankin-Selberg $L$-functions on ${\rm GL}(n)\times{\rm GL}(n)$.
Related Topics
Finding more related topics…