Performance characterization of a DRAM-NVM hybrid memory architecture for HPC applications using intel optane DC persistent memory modules Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1145/3357526.3357541
· OA: W2985656529
Non-volatile, byte-addressable memory (NVM) has been introduced by Intel in the form of NVDIMMs named Intel® Optane™ DC PMM. This memory module has the ability to persist the data stored in it without the need for power. This expands the memory hierarchy into a hybrid memory system due the differences in access latency and memory bandwidth from DRAM, which has been the predominant byte-addressable main memory technology. The Optane DC memory modules have up to 8x the capacity of DDR4 DRAM modules which can expand the byte-address space up to 6 TB per node. Many applications can now scale up the their problem size given such a memory system. We evaluate the capabilities of this DRAM-NVM hybrid memory system and its impact on High Performance Computing (HPC) applications. We characterize the Optane DC in comparison to DDR4 DRAM with a STREAM-like custom benchmark and measure the performance for HPC mini-apps like VPIC, SNAP, LULESH and AMG under different configurations of Optane DC PMMs. We find that Optane-only executions are slower in terms of execution time than DRAM-only and Memory-mode executions by a minimum of 2 to 16% for VPIC and maximum of 6x for LULESH.