Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi 2 Te 4 Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1126/science.aax8156
· OA: W3000852548
Quantum anomalous Hall goes intrinsic Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi 2 Se 3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi 2 Te 4 . Science , this issue p. 900 , p. 895 ; see also p. 848