Effective Control and Management Scheme for Isolated and Grid Connected DC Microgrid Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/tia.2020.3015819
· OA: W3048464269
This article addresses a voltage control and energy management strategy of active distribution systems with a grid-connected dc microgrid as well as for an islanded dc microgrid with hybrid energy resources. In the islanded mode, a control and management strategy using a backup diesel generator (DG), a renewable energy source (RES), and an energy storage system plays a vital role in maintaining the microgrid bus voltages within the limits. However, operating backup diesel generator (DG) has its own challenges including startup delay, frequent switching, and uneven loading when operated along with a RES. Additionally, fuel efficiency and emission characteristics vary with loading since most of DGs are driven by constant-speed diesel engines. Hence, an exhaustive power management scheme (PMS) is proposed by utilizing the hybrid energy storage system. Real-time simulation and experimental validation of the proposed scheme are provided using a real-time digital simulator (RTDS) and a laboratory scale prototype, respectively. Extreme scenarios including DG failure/scheduled maintenance, low power generation, and battery charge are analyzed in the islanded mode. Furthermore, a dc microgrid is connected to an IEEE active distribution system feeder to analyze control and management challenges for the grid connected mode with contribution from a microgrid and with no contribution from a microgrid. These scenarios resemble more realistic unbalanced utility grid conditions. A centralized optimization problem is formulated at an advanced distribution management system level to maintain all the node voltages within limits in the IEEE test system. RTDS is used to simulate dc microgrid connected with the IEEE test system and an optimization algorithm is implemented in MATLAB. Superior performance of the developed algorithms are demonstrated and validated for coordination between centralized optimization at ADMS and the microgrid energy management system.