Siegel modular flavor group and CP from string theory
Article Swipe
Related Concepts
Alexander Baur
,
Moritz Kade
,
Hans Peter Nilles
,
Saúl Ramos–Sánchez
,
Patrick K.S. Vaudrevange
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1016/j.physletb.2021.136176
· OA: W3111407421
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1016/j.physletb.2021.136176
· OA: W3111407421
We derive the potential modular symmetries of heterotic string theory. For a\ntoroidal compactification with Wilson line modulus, we obtain the Siegel\nmodular group $\\mathrm{Sp}(4,\\mathbb{Z})$ that includes the modular symmetries\n$\\mathrm{SL}(2,\\mathbb{Z})_T$ and $\\mathrm{SL}(2,\\mathbb{Z})_U$ (of the\n"geometric" moduli $T$ and $U$) as well as mirror symmetry. In addition, string\ntheory provides a candidate for a CP-like symmetry that enhances the Siegel\nmodular group to $\\mathrm{GSp}(4,\\mathbb{Z})$.\n
Related Topics
Finding more related topics…