LLaMA: Open and Efficient Foundation Language Models Article Swipe
Related Concepts
Hugo Touvron
,
Thibaut Lavril
,
Gautier Izacard
,
Xavier Martinet
,
Marie-Anne Lachaux
,
Timothée Lacroix
,
Baptiste Rozière
,
Naman Goyal
,
Eric Hambro
,
Faisal Azhar
,
Aurelien Rodriguez
,
Armand Joulin
,
Édouard Grave
,
Guillaume Lample
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.13971
· OA: W4322718191
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.13971
· OA: W4322718191
We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B. We release all our models to the research community.
Related Topics
Finding more related topics…