Single- and multi-objective optimisation of hybrid distillation-pervaporation and dividing wall column structures Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.cherd.2023.04.041
· OA: W4366779135
The separation of azeotropic mixtures is often energy intensive, thus process intensification (PI) becomes an attractive route to enhance energy efficiency. Two of the most commonly used separation intensifications are dividing wall columns and hybrid distillation-membrane processes. In this work, three typical hybrid distillation structures, distillation followed by pervaporation (D-P), pervaporation followed by distillation (P-D), and distillation followed by pervaporation then by distillation (D-P-D), are considered and compared with a hybrid dividing wall column (H-DWC) structure, which is a highly integrated process combining a dividing wall column and a pervaporation membrane network. The four structures are compared by both single-objective and multi-objective optimisation. It is shown that the D-P-D and H-DWC structures require significantly lower total annualized costs than the other two designs due to requiring smaller membrane area, as these two structures use the membrane only to help the mixture composition cross the azeotropic point.