Identification and segmentation of branch whorls and sawlogs in standing timber using terrestrial laser scanning and deep learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/forestry/cpaf006
Gaining insight into the wood quality of standing timber could facilitate more precise utilization of wood material, thereby promoting a more sustainable use of forest resources. In this study, we utilized convolutional neural network–based object detectors to segment individual branch whorls and sawlog sections from images derived from terrestrial laser scanning (TLS) point clouds. TLS was employed to capture the point clouds of 479 Norway spruce sample trees (Picea abies (L.) H. Karst.) from 14 stands in southeastern Finland. Subsequently, the trees were harvested and the sawlogs measured with X-ray at an industrial sawmill. The convolutional neural network–based branch whorl detector was trained with 2D images of the stem sections of trees in the TLS point clouds from which the branch whorls were manually annotated. The sawlog section detector was trained with 2D TLS images of whole trees in which sawlogs were automatically annotated, using the sawmill measurements. Comparing the detections of the whorl detector with those of the X-ray measurements yielded a root-mean-squared error of 7.73 (64.41%) for the whorl count. Additionally, we conducted further comparison of the detections against a dataset in which the whorls were manually measured from the TLS images, resulting in a root-mean-squared error of 3.99 (20.60%). The detections made by the sawlog detector in the TLS images of whole trees were utilized to calculate the predicted log length and volume, which were then compared with the sawmill measurements of the reference logs. In this comparison, the root-mean-squared error of log length was 0.73 m (15.18%), and that of volume was 0.10 m3 (36.62%). The results indicate that the whorl detector can be utilized for extracting branching features of standing timber that can serve as predictors of the internal wood quality. However, directly depicting the internal knot structure with external branch whorl detections poses a challenge. Additionally, while the sawlog detector demonstrated moderate performance in sawlog segmentation, the accuracies of the predicted log length and volume were relatively weak. Nevertheless, we anticipate that deep learning–based approaches can enhance the autonomous characterization of standing timber, e.g. when laser scanners in harvesters become more commonplace.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/forestry/cpaf006
- OA Status
- hybrid
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407722018
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407722018Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/forestry/cpaf006Digital Object Identifier
- Title
-
Identification and segmentation of branch whorls and sawlogs in standing timber using terrestrial laser scanning and deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-27Full publication date if available
- Authors
-
Mika Pehkonen, Mikko Vastaranta, Markus Holopainen, Juha Hyyppä, Antero Kukko, Jiri PyöräläList of authors in order
- Landing page
-
https://doi.org/10.1093/forestry/cpaf006Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/forestry/cpaf006Direct OA link when available
- Concepts
-
Segmentation, Artificial intelligence, Identification (biology), Anatomy, Geology, Biology, Computer science, Computer vision, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407722018 |
|---|---|
| doi | https://doi.org/10.1093/forestry/cpaf006 |
| ids.doi | https://doi.org/10.1093/forestry/cpaf006 |
| ids.openalex | https://openalex.org/W4407722018 |
| fwci | 2.04143621 |
| type | article |
| title | Identification and segmentation of branch whorls and sawlogs in standing timber using terrestrial laser scanning and deep learning |
| awards[0].id | https://openalex.org/G4097828329 |
| awards[0].funder_id | https://openalex.org/F4320321726 |
| awards[0].display_name | |
| awards[0].funder_award_id | 00230904 |
| awards[0].funder_display_name | Suomen Kulttuurirahasto |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T12713 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1109 |
| topics[1].subfield.display_name | Insect Science |
| topics[1].display_name | Forest Ecology and Biodiversity Studies |
| topics[2].id | https://openalex.org/T13568 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9968000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1605 |
| topics[2].subfield.display_name | Organic Chemistry |
| topics[2].display_name | Wood and Agarwood Research |
| funders[0].id | https://openalex.org/F4320321108 |
| funders[0].ror | https://ror.org/05k73zm37 |
| funders[0].display_name | Academy of Finland |
| funders[1].id | https://openalex.org/F4320321726 |
| funders[1].ror | https://ror.org/027xav248 |
| funders[1].display_name | Suomen Kulttuurirahasto |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.721555233001709 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5559449791908264 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C116834253 |
| concepts[2].level | 2 |
| concepts[2].score | 0.534751296043396 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[2].display_name | Identification (biology) |
| concepts[3].id | https://openalex.org/C105702510 |
| concepts[3].level | 1 |
| concepts[3].score | 0.39711207151412964 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[3].display_name | Anatomy |
| concepts[4].id | https://openalex.org/C127313418 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3502371311187744 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[4].display_name | Geology |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.345825731754303 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3412366509437561 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32456377148628235 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C59822182 |
| concepts[8].level | 1 |
| concepts[8].score | 0.17862975597381592 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[8].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.721555233001709 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5559449791908264 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/identification |
| keywords[2].score | 0.534751296043396 |
| keywords[2].display_name | Identification (biology) |
| keywords[3].id | https://openalex.org/keywords/anatomy |
| keywords[3].score | 0.39711207151412964 |
| keywords[3].display_name | Anatomy |
| keywords[4].id | https://openalex.org/keywords/geology |
| keywords[4].score | 0.3502371311187744 |
| keywords[4].display_name | Geology |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.345825731754303 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3412366509437561 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.32456377148628235 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/botany |
| keywords[8].score | 0.17862975597381592 |
| keywords[8].display_name | Botany |
| language | en |
| locations[0].id | doi:10.1093/forestry/cpaf006 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S152552278 |
| locations[0].source.issn | 0015-752X, 1464-3626 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0015-752X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Forestry An International Journal of Forest Research |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Forestry: An International Journal of Forest Research |
| locations[0].landing_page_url | https://doi.org/10.1093/forestry/cpaf006 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038845080 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-3001-5660 |
| authorships[0].author.display_name | Mika Pehkonen |
| authorships[0].countries | FI |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I175532246 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I133731052 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland |
| authorships[0].institutions[0].id | https://openalex.org/I175532246 |
| authorships[0].institutions[0].ror | https://ror.org/00cyydd11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I175532246 |
| authorships[0].institutions[0].country_code | FI |
| authorships[0].institutions[0].display_name | University of Eastern Finland |
| authorships[0].institutions[1].id | https://openalex.org/I133731052 |
| authorships[0].institutions[1].ror | https://ror.org/040af2s02 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I133731052 |
| authorships[0].institutions[1].country_code | FI |
| authorships[0].institutions[1].display_name | University of Helsinki |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mika Pehkonen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland |
| authorships[1].author.id | https://openalex.org/A5047838080 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6552-9122 |
| authorships[1].author.display_name | Mikko Vastaranta |
| authorships[1].countries | FI |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I175532246 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland |
| authorships[1].institutions[0].id | https://openalex.org/I175532246 |
| authorships[1].institutions[0].ror | https://ror.org/00cyydd11 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I175532246 |
| authorships[1].institutions[0].country_code | FI |
| authorships[1].institutions[0].display_name | University of Eastern Finland |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mikko Vastaranta |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland |
| authorships[2].author.id | https://openalex.org/A5061837252 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6489-8671 |
| authorships[2].author.display_name | Markus Holopainen |
| authorships[2].countries | FI |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I133731052 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland |
| authorships[2].institutions[0].id | https://openalex.org/I133731052 |
| authorships[2].institutions[0].ror | https://ror.org/040af2s02 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I133731052 |
| authorships[2].institutions[0].country_code | FI |
| authorships[2].institutions[0].display_name | University of Helsinki |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Markus Holopainen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland |
| authorships[3].author.id | https://openalex.org/A5033042071 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5360-4017 |
| authorships[3].author.display_name | Juha Hyyppä |
| authorships[3].countries | FI |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33876163 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute National Land Survey of Finland, Vuorimiehentie 5, FI-02150, Espoo, Finland |
| authorships[3].institutions[0].id | https://openalex.org/I33876163 |
| authorships[3].institutions[0].ror | https://ror.org/01zv3gf04 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I33876163 |
| authorships[3].institutions[0].country_code | FI |
| authorships[3].institutions[0].display_name | Finnish Geospatial Research Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Juha Hyyppä |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute National Land Survey of Finland, Vuorimiehentie 5, FI-02150, Espoo, Finland |
| authorships[4].author.id | https://openalex.org/A5045584015 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3841-6533 |
| authorships[4].author.display_name | Antero Kukko |
| authorships[4].countries | FI |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I33876163 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute National Land Survey of Finland, Vuorimiehentie 5, FI-02150, Espoo, Finland |
| authorships[4].institutions[0].id | https://openalex.org/I33876163 |
| authorships[4].institutions[0].ror | https://ror.org/01zv3gf04 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I33876163 |
| authorships[4].institutions[0].country_code | FI |
| authorships[4].institutions[0].display_name | Finnish Geospatial Research Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Antero Kukko |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute National Land Survey of Finland, Vuorimiehentie 5, FI-02150, Espoo, Finland |
| authorships[5].author.id | https://openalex.org/A5089640099 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4045-6067 |
| authorships[5].author.display_name | Jiri Pyörälä |
| authorships[5].countries | FI |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I133731052 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I33876163 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute National Land Survey of Finland, Vuorimiehentie 5, FI-02150, Espoo, Finland |
| authorships[5].institutions[0].id | https://openalex.org/I33876163 |
| authorships[5].institutions[0].ror | https://ror.org/01zv3gf04 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I33876163 |
| authorships[5].institutions[0].country_code | FI |
| authorships[5].institutions[0].display_name | Finnish Geospatial Research Institute |
| authorships[5].institutions[1].id | https://openalex.org/I133731052 |
| authorships[5].institutions[1].ror | https://ror.org/040af2s02 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I133731052 |
| authorships[5].institutions[1].country_code | FI |
| authorships[5].institutions[1].display_name | University of Helsinki |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jiri Pyörälä |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland, Department of Photogrammetry and Remote Sensing, Finnish Geospatial Research Institute National Land Survey of Finland, Vuorimiehentie 5, FI-02150, Espoo, Finland |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/forestry/cpaf006 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identification and segmentation of branch whorls and sawlogs in standing timber using terrestrial laser scanning and deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/forestry/cpaf006 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S152552278 |
| best_oa_location.source.issn | 0015-752X, 1464-3626 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0015-752X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Forestry An International Journal of Forest Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Forestry: An International Journal of Forest Research |
| best_oa_location.landing_page_url | https://doi.org/10.1093/forestry/cpaf006 |
| primary_location.id | doi:10.1093/forestry/cpaf006 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S152552278 |
| primary_location.source.issn | 0015-752X, 1464-3626 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0015-752X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Forestry An International Journal of Forest Research |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Forestry: An International Journal of Forest Research |
| primary_location.landing_page_url | https://doi.org/10.1093/forestry/cpaf006 |
| publication_date | 2025-01-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2946217260, https://openalex.org/W7093349750, https://openalex.org/W3086841682, https://openalex.org/W3174491732, https://openalex.org/W2144313462, https://openalex.org/W3109077063, https://openalex.org/W3216361804, https://openalex.org/W2088385352, https://openalex.org/W1760422680, https://openalex.org/W2991366354, https://openalex.org/W6737089929, https://openalex.org/W2884197231, https://openalex.org/W2963857746, https://openalex.org/W2045013307, https://openalex.org/W4283806719, https://openalex.org/W2922462578, https://openalex.org/W2736044638, https://openalex.org/W2908794809, https://openalex.org/W2963037989, https://openalex.org/W3088507381, https://openalex.org/W2794236899, https://openalex.org/W2076063813, https://openalex.org/W6690107128, https://openalex.org/W1841745650, https://openalex.org/W4382400884, https://openalex.org/W4389343345, https://openalex.org/W2786036844, https://openalex.org/W2239708422, https://openalex.org/W3042011474, https://openalex.org/W2476424756, https://openalex.org/W2607443569 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 20, 163, 182, 197, 300 |
| abstract_inverted_index.m | 250 |
| abstract_inverted_index.14 | 75 |
| abstract_inverted_index.2D | 105, 133 |
| abstract_inverted_index.H. | 72 |
| abstract_inverted_index.In | 27, 239 |
| abstract_inverted_index.an | 92 |
| abstract_inverted_index.as | 280 |
| abstract_inverted_index.at | 91 |
| abstract_inverted_index.be | 268 |
| abstract_inverted_index.by | 206 |
| abstract_inverted_index.in | 77, 113, 139, 184, 196, 210, 310, 344 |
| abstract_inverted_index.m3 | 258 |
| abstract_inverted_index.of | 7, 15, 24, 63, 107, 111, 136, 152, 158, 166, 178, 200, 214, 235, 245, 254, 274, 282, 315, 337 |
| abstract_inverted_index.to | 37, 58, 219 |
| abstract_inverted_index.we | 30, 174, 326 |
| abstract_inverted_index.479 | 64 |
| abstract_inverted_index.TLS | 55, 115, 134, 193, 212 |
| abstract_inverted_index.The | 95, 126, 203, 260 |
| abstract_inverted_index.and | 42, 85, 225, 252, 320 |
| abstract_inverted_index.can | 267, 278, 332 |
| abstract_inverted_index.for | 169, 270 |
| abstract_inverted_index.log | 223, 246, 318 |
| abstract_inverted_index.the | 4, 60, 81, 86, 108, 114, 120, 146, 150, 153, 159, 170, 179, 186, 192, 207, 211, 221, 232, 236, 242, 264, 283, 290, 304, 313, 316, 334 |
| abstract_inverted_index.use | 23 |
| abstract_inverted_index.was | 56, 102, 130, 248, 256 |
| abstract_inverted_index.(L.) | 71 |
| abstract_inverted_index.0.10 | 257 |
| abstract_inverted_index.0.73 | 249 |
| abstract_inverted_index.3.99 | 201 |
| abstract_inverted_index.7.73 | 167 |
| abstract_inverted_index.deep | 329 |
| abstract_inverted_index.e.g. | 340 |
| abstract_inverted_index.from | 45, 48, 74, 118, 191 |
| abstract_inverted_index.into | 3 |
| abstract_inverted_index.knot | 292 |
| abstract_inverted_index.made | 205 |
| abstract_inverted_index.more | 12, 21, 347 |
| abstract_inverted_index.stem | 109 |
| abstract_inverted_index.that | 253, 263, 277, 328 |
| abstract_inverted_index.then | 229 |
| abstract_inverted_index.this | 28, 240 |
| abstract_inverted_index.were | 83, 123, 142, 188, 217, 228, 322 |
| abstract_inverted_index.when | 341 |
| abstract_inverted_index.with | 89, 104, 132, 156, 231, 294 |
| abstract_inverted_index.wood | 5, 16, 285 |
| abstract_inverted_index.(TLS) | 52 |
| abstract_inverted_index.X-ray | 90, 160 |
| abstract_inverted_index.abies | 70 |
| abstract_inverted_index.could | 10 |
| abstract_inverted_index.error | 165, 199, 244 |
| abstract_inverted_index.laser | 50, 342 |
| abstract_inverted_index.logs. | 238 |
| abstract_inverted_index.point | 53, 61, 116 |
| abstract_inverted_index.poses | 299 |
| abstract_inverted_index.serve | 279 |
| abstract_inverted_index.those | 157 |
| abstract_inverted_index.trees | 68, 82, 112, 138, 216 |
| abstract_inverted_index.using | 145 |
| abstract_inverted_index.weak. | 324 |
| abstract_inverted_index.which | 119, 140, 185, 227 |
| abstract_inverted_index.while | 303 |
| abstract_inverted_index.whole | 137, 215 |
| abstract_inverted_index.whorl | 100, 154, 171, 265, 297 |
| abstract_inverted_index.(Picea | 69 |
| abstract_inverted_index.Norway | 65 |
| abstract_inverted_index.become | 346 |
| abstract_inverted_index.branch | 40, 99, 121, 296 |
| abstract_inverted_index.clouds | 62, 117 |
| abstract_inverted_index.count. | 172 |
| abstract_inverted_index.forest | 25 |
| abstract_inverted_index.images | 46, 106, 135, 213 |
| abstract_inverted_index.length | 224, 247, 319 |
| abstract_inverted_index.neural | 33, 97 |
| abstract_inverted_index.object | 35 |
| abstract_inverted_index.sample | 67 |
| abstract_inverted_index.sawlog | 43, 127, 208, 305, 311 |
| abstract_inverted_index.spruce | 66 |
| abstract_inverted_index.stands | 76 |
| abstract_inverted_index.study, | 29 |
| abstract_inverted_index.timber | 9, 276 |
| abstract_inverted_index.volume | 255, 321 |
| abstract_inverted_index.whorls | 41, 122, 187 |
| abstract_inverted_index.Gaining | 1 |
| abstract_inverted_index.Karst.) | 73 |
| abstract_inverted_index.against | 181 |
| abstract_inverted_index.capture | 59 |
| abstract_inverted_index.clouds. | 54 |
| abstract_inverted_index.dataset | 183 |
| abstract_inverted_index.derived | 47 |
| abstract_inverted_index.enhance | 333 |
| abstract_inverted_index.further | 176 |
| abstract_inverted_index.images, | 194 |
| abstract_inverted_index.insight | 2 |
| abstract_inverted_index.precise | 13 |
| abstract_inverted_index.quality | 6 |
| abstract_inverted_index.results | 261 |
| abstract_inverted_index.sawlogs | 87, 141 |
| abstract_inverted_index.sawmill | 147, 233 |
| abstract_inverted_index.section | 128 |
| abstract_inverted_index.segment | 38 |
| abstract_inverted_index.thereby | 18 |
| abstract_inverted_index.timber, | 339 |
| abstract_inverted_index.trained | 103, 131 |
| abstract_inverted_index.volume, | 226 |
| abstract_inverted_index.yielded | 162 |
| abstract_inverted_index.(64.41%) | 168 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finland. | 79 |
| abstract_inverted_index.However, | 287 |
| abstract_inverted_index.compared | 230 |
| abstract_inverted_index.detector | 101, 129, 155, 209, 266, 306 |
| abstract_inverted_index.directly | 288 |
| abstract_inverted_index.employed | 57 |
| abstract_inverted_index.external | 295 |
| abstract_inverted_index.features | 273 |
| abstract_inverted_index.indicate | 262 |
| abstract_inverted_index.internal | 284, 291 |
| abstract_inverted_index.manually | 124, 189 |
| abstract_inverted_index.measured | 88, 190 |
| abstract_inverted_index.moderate | 308 |
| abstract_inverted_index.quality. | 286 |
| abstract_inverted_index.sawmill. | 94 |
| abstract_inverted_index.scanners | 343 |
| abstract_inverted_index.scanning | 51 |
| abstract_inverted_index.sections | 44, 110 |
| abstract_inverted_index.standing | 8, 275, 338 |
| abstract_inverted_index.utilized | 31, 218, 269 |
| abstract_inverted_index.(15.18%), | 251 |
| abstract_inverted_index.(20.60%). | 202 |
| abstract_inverted_index.(36.62%). | 259 |
| abstract_inverted_index.Comparing | 149 |
| abstract_inverted_index.branching | 272 |
| abstract_inverted_index.calculate | 220 |
| abstract_inverted_index.conducted | 175 |
| abstract_inverted_index.depicting | 289 |
| abstract_inverted_index.detectors | 36 |
| abstract_inverted_index.harvested | 84 |
| abstract_inverted_index.material, | 17 |
| abstract_inverted_index.predicted | 222, 317 |
| abstract_inverted_index.promoting | 19 |
| abstract_inverted_index.reference | 237 |
| abstract_inverted_index.resulting | 195 |
| abstract_inverted_index.structure | 293 |
| abstract_inverted_index.accuracies | 314 |
| abstract_inverted_index.annotated, | 144 |
| abstract_inverted_index.annotated. | 125 |
| abstract_inverted_index.anticipate | 327 |
| abstract_inverted_index.approaches | 331 |
| abstract_inverted_index.autonomous | 335 |
| abstract_inverted_index.challenge. | 301 |
| abstract_inverted_index.comparison | 177 |
| abstract_inverted_index.detections | 151, 180, 204, 298 |
| abstract_inverted_index.extracting | 271 |
| abstract_inverted_index.facilitate | 11 |
| abstract_inverted_index.harvesters | 345 |
| abstract_inverted_index.individual | 39 |
| abstract_inverted_index.industrial | 93 |
| abstract_inverted_index.predictors | 281 |
| abstract_inverted_index.relatively | 323 |
| abstract_inverted_index.resources. | 26 |
| abstract_inverted_index.comparison, | 241 |
| abstract_inverted_index.performance | 309 |
| abstract_inverted_index.sustainable | 22 |
| abstract_inverted_index.terrestrial | 49 |
| abstract_inverted_index.utilization | 14 |
| abstract_inverted_index.commonplace. | 348 |
| abstract_inverted_index.demonstrated | 307 |
| abstract_inverted_index.measurements | 161, 234 |
| abstract_inverted_index.southeastern | 78 |
| abstract_inverted_index.Additionally, | 173, 302 |
| abstract_inverted_index.Nevertheless, | 325 |
| abstract_inverted_index.Subsequently, | 80 |
| abstract_inverted_index.automatically | 143 |
| abstract_inverted_index.convolutional | 32, 96 |
| abstract_inverted_index.measurements. | 148 |
| abstract_inverted_index.segmentation, | 312 |
| abstract_inverted_index.network–based | 34, 98 |
| abstract_inverted_index.characterization | 336 |
| abstract_inverted_index.learning–based | 330 |
| abstract_inverted_index.root-mean-squared | 164, 198, 243 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.73946831 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |