Identification and sorting of impurities in tea using spectral vision Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.lwt.2024.116519
Removing impurities from Puer tea is an important step in its processing. However, existing methods are unable to accurately and efficiently sort impurities from Puer tea. This study proposes a novel method based on spectral imaging technology to identify impurities in Puer tea. Hyperspectral images of tea and impurities were acquired in the 400–1000 nm wavelengths. The spectra of each category of samples were extracted from the hyperspectral images and comprehensively analysed and processed, mainly including outlier detection and elimination, spectral preprocessing, and characteristic wavelengths selection. Support vector machine (SVM) models are built based on full-spectrum data and characteristic wavelengths data to achieve pixel-level classification of hyperspectral images. The results showed that the best model based on full spectra achieved an accuracy of 97.8% on the test dataset. The best models based on characteristic wavelengths selected by successive projections algorithm and genetic algorithm achieved accuracies of 95.9% and 94.9%, respectively. Finally, these pixel classification models were applied to the test samples to test the effectiveness of the models in identifying impurities. The results indicate that the three selected models can effectively identify impurities and even perform well on identifying unfamiliar categories of impurities.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.lwt.2024.116519
- OA Status
- gold
- Cited By
- 11
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400842998
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400842998Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.lwt.2024.116519Digital Object Identifier
- Title
-
Identification and sorting of impurities in tea using spectral visionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-20Full publication date if available
- Authors
-
Yuchen Guo, Ziru Yu, Xiangyang Yu, Xiaoqing Wang, Yefan Cai, Weibin Hong, Wei CuiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.lwt.2024.116519Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.lwt.2024.116519Direct OA link when available
- Concepts
-
Hyperspectral imaging, Support vector machine, Sorting, Preprocessor, Outlier, Pattern recognition (psychology), Artificial intelligence, sort, Pixel, Data pre-processing, Computer science, Impurity, Remote sensing, Algorithm, Geography, Chemistry, Organic chemistry, Information retrievalTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400842998 |
|---|---|
| doi | https://doi.org/10.1016/j.lwt.2024.116519 |
| ids.doi | https://doi.org/10.1016/j.lwt.2024.116519 |
| ids.openalex | https://openalex.org/W4400842998 |
| fwci | 4.9016707 |
| type | article |
| title | Identification and sorting of impurities in tea using spectral vision |
| awards[0].id | https://openalex.org/G3799815106 |
| awards[0].funder_id | https://openalex.org/F4320321160 |
| awards[0].display_name | |
| awards[0].funder_award_id | 74130-71010020 |
| awards[0].funder_display_name | Sun Yat-sen University |
| biblio.issue | |
| biblio.volume | 205 |
| biblio.last_page | 116519 |
| biblio.first_page | 116519 |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T11667 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Chemical Sensor Technologies |
| topics[2].id | https://openalex.org/T10035 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9769999980926514 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2704 |
| topics[2].subfield.display_name | Biochemistry |
| topics[2].display_name | Phytochemicals and Antioxidant Activities |
| funders[0].id | https://openalex.org/F4320321160 |
| funders[0].ror | https://ror.org/0064kty71 |
| funders[0].display_name | Sun Yat-sen University |
| is_xpac | False |
| apc_list.value | 2250 |
| apc_list.currency | USD |
| apc_list.value_usd | 2250 |
| apc_paid.value | 2250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2250 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8937680721282959 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C12267149 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7173963785171509 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[1].display_name | Support vector machine |
| concepts[2].id | https://openalex.org/C111696304 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7101314663887024 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2303697 |
| concepts[2].display_name | Sorting |
| concepts[3].id | https://openalex.org/C34736171 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6846551895141602 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[3].display_name | Preprocessor |
| concepts[4].id | https://openalex.org/C79337645 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6575263738632202 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[4].display_name | Outlier |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6450362205505371 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.6335800886154175 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C88548561 |
| concepts[7].level | 2 |
| concepts[7].score | 0.6084556579589844 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q347599 |
| concepts[7].display_name | sort |
| concepts[8].id | https://openalex.org/C160633673 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5774195194244385 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[8].display_name | Pixel |
| concepts[9].id | https://openalex.org/C10551718 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5445859432220459 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5227332 |
| concepts[9].display_name | Data pre-processing |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.5380937457084656 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C71987851 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4405771493911743 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7216430 |
| concepts[11].display_name | Impurity |
| concepts[12].id | https://openalex.org/C62649853 |
| concepts[12].level | 1 |
| concepts[12].score | 0.36859768629074097 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[12].display_name | Remote sensing |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1688689887523651 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13967955112457275 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12520861625671387 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C178790620 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[16].display_name | Organic chemistry |
| concepts[17].id | https://openalex.org/C23123220 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[17].display_name | Information retrieval |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.8937680721282959 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/support-vector-machine |
| keywords[1].score | 0.7173963785171509 |
| keywords[1].display_name | Support vector machine |
| keywords[2].id | https://openalex.org/keywords/sorting |
| keywords[2].score | 0.7101314663887024 |
| keywords[2].display_name | Sorting |
| keywords[3].id | https://openalex.org/keywords/preprocessor |
| keywords[3].score | 0.6846551895141602 |
| keywords[3].display_name | Preprocessor |
| keywords[4].id | https://openalex.org/keywords/outlier |
| keywords[4].score | 0.6575263738632202 |
| keywords[4].display_name | Outlier |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.6450362205505371 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.6335800886154175 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/sort |
| keywords[7].score | 0.6084556579589844 |
| keywords[7].display_name | sort |
| keywords[8].id | https://openalex.org/keywords/pixel |
| keywords[8].score | 0.5774195194244385 |
| keywords[8].display_name | Pixel |
| keywords[9].id | https://openalex.org/keywords/data-pre-processing |
| keywords[9].score | 0.5445859432220459 |
| keywords[9].display_name | Data pre-processing |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.5380937457084656 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/impurity |
| keywords[11].score | 0.4405771493911743 |
| keywords[11].display_name | Impurity |
| keywords[12].id | https://openalex.org/keywords/remote-sensing |
| keywords[12].score | 0.36859768629074097 |
| keywords[12].display_name | Remote sensing |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.1688689887523651 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.13967955112457275 |
| keywords[14].display_name | Geography |
| keywords[15].id | https://openalex.org/keywords/chemistry |
| keywords[15].score | 0.12520861625671387 |
| keywords[15].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.1016/j.lwt.2024.116519 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S26760650 |
| locations[0].source.issn | 0023-6438, 1096-1127 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0023-6438 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | LWT |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | LWT |
| locations[0].landing_page_url | https://doi.org/10.1016/j.lwt.2024.116519 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5049803016 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6237-1339 |
| authorships[0].author.display_name | Yuchen Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Nanchang Research Institute, Sun Yat-Sen University, Guangzhou, 510275, China |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuchen Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Nanchang Research Institute, Sun Yat-Sen University, Guangzhou, 510275, China |
| authorships[1].author.id | https://openalex.org/A5070518270 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9763-8806 |
| authorships[1].author.display_name | Ziru Yu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ziru Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China |
| authorships[2].author.id | https://openalex.org/A5101776455 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6673-3221 |
| authorships[2].author.display_name | Xiangyang Yu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Nanchang Research Institute, Sun Yat-Sen University, Guangzhou, 510275, China |
| authorships[2].institutions[0].id | https://openalex.org/I157773358 |
| authorships[2].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sun Yat-sen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiangyang Yu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Nanchang Research Institute, Sun Yat-Sen University, Guangzhou, 510275, China |
| authorships[3].author.id | https://openalex.org/A5101482946 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5289-040X |
| authorships[3].author.display_name | Xiaoqing Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen, 518107, China |
| authorships[3].institutions[0].id | https://openalex.org/I157773358 |
| authorships[3].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sun Yat-sen University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaoqing Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen, 518107, China |
| authorships[4].author.id | https://openalex.org/A5012382695 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yefan Cai |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210150595 |
| authorships[4].affiliations[0].raw_affiliation_string | Guangzhou Guangxin Technology Co. Ltd, Guangzhou, 510300, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210150595 |
| authorships[4].institutions[0].ror | https://ror.org/03rq35s79 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210150595 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guangzhou Electronic Technology (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yefan Cai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Guangzhou Guangxin Technology Co. Ltd, Guangzhou, 510300, China |
| authorships[5].author.id | https://openalex.org/A5108770749 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Weibin Hong |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210150595 |
| authorships[5].affiliations[0].raw_affiliation_string | Guangzhou Guangxin Technology Co. Ltd, Guangzhou, 510300, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210150595 |
| authorships[5].institutions[0].ror | https://ror.org/03rq35s79 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210150595 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Guangzhou Electronic Technology (China) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Weibin Hong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Guangzhou Guangxin Technology Co. Ltd, Guangzhou, 510300, China |
| authorships[6].author.id | https://openalex.org/A5046360308 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7489-923X |
| authorships[6].author.display_name | Wei Cui |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China |
| authorships[6].institutions[0].id | https://openalex.org/I90610280 |
| authorships[6].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | South China University of Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wei Cui |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.lwt.2024.116519 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identification and sorting of impurities in tea using spectral vision |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2095055219, https://openalex.org/W2482527088, https://openalex.org/W2362374543, https://openalex.org/W2116295091, https://openalex.org/W4319430205, https://openalex.org/W3121711078, https://openalex.org/W2085265870, https://openalex.org/W2348196682 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.lwt.2024.116519 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S26760650 |
| best_oa_location.source.issn | 0023-6438, 1096-1127 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0023-6438 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | LWT |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | LWT |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.lwt.2024.116519 |
| primary_location.id | doi:10.1016/j.lwt.2024.116519 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S26760650 |
| primary_location.source.issn | 0023-6438, 1096-1127 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0023-6438 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | LWT |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | LWT |
| primary_location.landing_page_url | https://doi.org/10.1016/j.lwt.2024.116519 |
| publication_date | 2024-07-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1982755765, https://openalex.org/W3035611289, https://openalex.org/W2007178835, https://openalex.org/W2969514116, https://openalex.org/W1996118086, https://openalex.org/W2025876953, https://openalex.org/W2044280843, https://openalex.org/W2016045532, https://openalex.org/W4250503569, https://openalex.org/W2982531730, https://openalex.org/W2054616505, https://openalex.org/W3092718721, https://openalex.org/W1600918697, https://openalex.org/W4210722081, https://openalex.org/W3021141626, https://openalex.org/W3133907600, https://openalex.org/W4381930718, https://openalex.org/W1996621989, https://openalex.org/W2027461913, https://openalex.org/W6679857237, https://openalex.org/W2058734149, https://openalex.org/W2918060226, https://openalex.org/W3210288206, https://openalex.org/W4210463746, https://openalex.org/W6642184243, https://openalex.org/W6734713882, https://openalex.org/W2062041991, https://openalex.org/W2341283081, https://openalex.org/W2086190838, https://openalex.org/W6798149653, https://openalex.org/W4200125732, https://openalex.org/W4362678198, https://openalex.org/W4388171732, https://openalex.org/W6858044615, https://openalex.org/W4206642698, https://openalex.org/W592146121, https://openalex.org/W3181857954, https://openalex.org/W2593156377, https://openalex.org/W1603831738 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 29 |
| abstract_inverted_index.an | 6, 120 |
| abstract_inverted_index.by | 136 |
| abstract_inverted_index.in | 9, 40, 51, 168 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.nm | 54 |
| abstract_inverted_index.of | 45, 58, 61, 105, 122, 145, 165, 191 |
| abstract_inverted_index.on | 33, 94, 116, 124, 132, 187 |
| abstract_inverted_index.to | 17, 37, 101, 157, 161 |
| abstract_inverted_index.The | 56, 108, 128, 171 |
| abstract_inverted_index.and | 19, 47, 69, 72, 78, 82, 97, 140, 147, 183 |
| abstract_inverted_index.are | 15, 91 |
| abstract_inverted_index.can | 179 |
| abstract_inverted_index.its | 10 |
| abstract_inverted_index.tea | 4, 46 |
| abstract_inverted_index.the | 52, 66, 112, 125, 158, 163, 166, 175 |
| abstract_inverted_index.Puer | 3, 24, 41 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.best | 113, 129 |
| abstract_inverted_index.data | 96, 100 |
| abstract_inverted_index.each | 59 |
| abstract_inverted_index.even | 184 |
| abstract_inverted_index.from | 2, 23, 65 |
| abstract_inverted_index.full | 117 |
| abstract_inverted_index.sort | 21 |
| abstract_inverted_index.step | 8 |
| abstract_inverted_index.tea. | 25, 42 |
| abstract_inverted_index.test | 126, 159, 162 |
| abstract_inverted_index.that | 111, 174 |
| abstract_inverted_index.well | 186 |
| abstract_inverted_index.were | 49, 63, 155 |
| abstract_inverted_index.(SVM) | 89 |
| abstract_inverted_index.95.9% | 146 |
| abstract_inverted_index.97.8% | 123 |
| abstract_inverted_index.based | 32, 93, 115, 131 |
| abstract_inverted_index.built | 92 |
| abstract_inverted_index.model | 114 |
| abstract_inverted_index.novel | 30 |
| abstract_inverted_index.pixel | 152 |
| abstract_inverted_index.study | 27 |
| abstract_inverted_index.these | 151 |
| abstract_inverted_index.three | 176 |
| abstract_inverted_index.94.9%, | 148 |
| abstract_inverted_index.images | 44, 68 |
| abstract_inverted_index.mainly | 74 |
| abstract_inverted_index.method | 31 |
| abstract_inverted_index.models | 90, 130, 154, 167, 178 |
| abstract_inverted_index.showed | 110 |
| abstract_inverted_index.unable | 16 |
| abstract_inverted_index.vector | 87 |
| abstract_inverted_index.Support | 86 |
| abstract_inverted_index.achieve | 102 |
| abstract_inverted_index.applied | 156 |
| abstract_inverted_index.genetic | 141 |
| abstract_inverted_index.images. | 107 |
| abstract_inverted_index.imaging | 35 |
| abstract_inverted_index.machine | 88 |
| abstract_inverted_index.methods | 14 |
| abstract_inverted_index.outlier | 76 |
| abstract_inverted_index.perform | 185 |
| abstract_inverted_index.results | 109, 172 |
| abstract_inverted_index.samples | 62, 160 |
| abstract_inverted_index.spectra | 57, 118 |
| abstract_inverted_index.Finally, | 150 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.Removing | 0 |
| abstract_inverted_index.accuracy | 121 |
| abstract_inverted_index.achieved | 119, 143 |
| abstract_inverted_index.acquired | 50 |
| abstract_inverted_index.analysed | 71 |
| abstract_inverted_index.category | 60 |
| abstract_inverted_index.dataset. | 127 |
| abstract_inverted_index.existing | 13 |
| abstract_inverted_index.identify | 38, 181 |
| abstract_inverted_index.indicate | 173 |
| abstract_inverted_index.proposes | 28 |
| abstract_inverted_index.selected | 135, 177 |
| abstract_inverted_index.spectral | 34, 80 |
| abstract_inverted_index.algorithm | 139, 142 |
| abstract_inverted_index.detection | 77 |
| abstract_inverted_index.extracted | 64 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.including | 75 |
| abstract_inverted_index.400–1000 | 53 |
| abstract_inverted_index.accuracies | 144 |
| abstract_inverted_index.accurately | 18 |
| abstract_inverted_index.categories | 190 |
| abstract_inverted_index.impurities | 1, 22, 39, 48, 182 |
| abstract_inverted_index.processed, | 73 |
| abstract_inverted_index.selection. | 85 |
| abstract_inverted_index.successive | 137 |
| abstract_inverted_index.technology | 36 |
| abstract_inverted_index.unfamiliar | 189 |
| abstract_inverted_index.effectively | 180 |
| abstract_inverted_index.efficiently | 20 |
| abstract_inverted_index.identifying | 169, 188 |
| abstract_inverted_index.impurities. | 170, 192 |
| abstract_inverted_index.pixel-level | 103 |
| abstract_inverted_index.processing. | 11 |
| abstract_inverted_index.projections | 138 |
| abstract_inverted_index.wavelengths | 84, 99, 134 |
| abstract_inverted_index.elimination, | 79 |
| abstract_inverted_index.wavelengths. | 55 |
| abstract_inverted_index.Hyperspectral | 43 |
| abstract_inverted_index.effectiveness | 164 |
| abstract_inverted_index.full-spectrum | 95 |
| abstract_inverted_index.hyperspectral | 67, 106 |
| abstract_inverted_index.respectively. | 149 |
| abstract_inverted_index.characteristic | 83, 98, 133 |
| abstract_inverted_index.classification | 104, 153 |
| abstract_inverted_index.preprocessing, | 81 |
| abstract_inverted_index.comprehensively | 70 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5101776455 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I157773358 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.92671614 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |