Identification of Driver Phone Usage Violations via State-of-the-Art Object Detection with Tracking Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/bigdata52589.2021.9671378
The use of mobiles phones when driving has been \na major factor when it comes to road traffic incidents and \nthe process of capturing such violations can be a laborious \ntask. Advancements in both modern object detection frameworks \nand high-performance hardware has paved the way for a more \nautomated approach when it comes to video surveillance. In \nthis work, we propose a custom-trained state-of-the-art object \ndetector to work with roadside cameras to capture driver phone \nusage without the need for human intervention. The proposed \napproach also addresses the issues caused by windscreen glare \nand introduces the steps required to remedy this. Twelve pretrained models are fine-tuned with our custom dataset using \nfour popular object detection methods: YOLO, SSD, Faster RCNN, and CenterNet. Out of all the object detectors tested, \nYOLO yields the highest accuracy levels of up to ∼96% (AP10) \nand frame rates of up to ∼30 FPS. DeepSORT object tracking \nalgorithm is also integrated into the best-performing model in \norder to avoid logging duplicate violations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/bigdata52589.2021.9671378
- OA Status
- gold
- Cited By
- 8
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3196427668
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3196427668Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/bigdata52589.2021.9671378Digital Object Identifier
- Title
-
Identification of Driver Phone Usage Violations via State-of-the-Art Object Detection with TrackingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-15Full publication date if available
- Authors
-
Steven Carrell, Amir Atapour–AbarghoueiList of authors in order
- Landing page
-
https://doi.org/10.1109/bigdata52589.2021.9671378Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://durham-repository.worktribe.com/output/1138899Direct OA link when available
- Concepts
-
Computer science, Phone, Object detection, Object (grammar), Identification (biology), Detector, Video tracking, Frame (networking), Computer vision, Artificial intelligence, Task (project management), Process (computing), Tracking (education), Frame rate, Real-time computing, Pattern recognition (psychology), Engineering, Telecommunications, Psychology, Linguistics, Philosophy, Systems engineering, Operating system, Pedagogy, Botany, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2023: 2, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3196427668 |
|---|---|
| doi | https://doi.org/10.1109/bigdata52589.2021.9671378 |
| ids.doi | https://doi.org/10.1109/bigdata52589.2021.9671378 |
| ids.mag | 3196427668 |
| ids.openalex | https://openalex.org/W3196427668 |
| fwci | 0.31672581 |
| type | article |
| title | Identification of Driver Phone Usage Violations via State-of-the-Art Object Detection with Tracking |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1241 |
| biblio.first_page | 1236 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7698080539703369 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778707766 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7037131190299988 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q202064 |
| concepts[1].display_name | Phone |
| concepts[2].id | https://openalex.org/C2776151529 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6672484874725342 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[2].display_name | Object detection |
| concepts[3].id | https://openalex.org/C2781238097 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6294265389442444 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[3].display_name | Object (grammar) |
| concepts[4].id | https://openalex.org/C116834253 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6100419759750366 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[4].display_name | Identification (biology) |
| concepts[5].id | https://openalex.org/C94915269 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5770622491836548 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[5].display_name | Detector |
| concepts[6].id | https://openalex.org/C202474056 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5731756687164307 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1931635 |
| concepts[6].display_name | Video tracking |
| concepts[7].id | https://openalex.org/C126042441 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5705208778381348 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[7].display_name | Frame (networking) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5315715074539185 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.5224229693412781 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5084699392318726 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C98045186 |
| concepts[11].level | 2 |
| concepts[11].score | 0.47504663467407227 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[11].display_name | Process (computing) |
| concepts[12].id | https://openalex.org/C2775936607 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4582679569721222 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[12].display_name | Tracking (education) |
| concepts[13].id | https://openalex.org/C3261483 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4248751997947693 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q119565 |
| concepts[13].display_name | Frame rate |
| concepts[14].id | https://openalex.org/C79403827 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3364364504814148 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[14].display_name | Real-time computing |
| concepts[15].id | https://openalex.org/C153180895 |
| concepts[15].level | 2 |
| concepts[15].score | 0.22374090552330017 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[15].display_name | Pattern recognition (psychology) |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.12224507331848145 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C76155785 |
| concepts[17].level | 1 |
| concepts[17].score | 0.07880523800849915 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[17].display_name | Telecommunications |
| concepts[18].id | https://openalex.org/C15744967 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[18].display_name | Psychology |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C201995342 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[21].display_name | Systems engineering |
| concepts[22].id | https://openalex.org/C111919701 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[22].display_name | Operating system |
| concepts[23].id | https://openalex.org/C19417346 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[23].display_name | Pedagogy |
| concepts[24].id | https://openalex.org/C59822182 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[24].display_name | Botany |
| concepts[25].id | https://openalex.org/C86803240 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[25].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7698080539703369 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/phone |
| keywords[1].score | 0.7037131190299988 |
| keywords[1].display_name | Phone |
| keywords[2].id | https://openalex.org/keywords/object-detection |
| keywords[2].score | 0.6672484874725342 |
| keywords[2].display_name | Object detection |
| keywords[3].id | https://openalex.org/keywords/object |
| keywords[3].score | 0.6294265389442444 |
| keywords[3].display_name | Object (grammar) |
| keywords[4].id | https://openalex.org/keywords/identification |
| keywords[4].score | 0.6100419759750366 |
| keywords[4].display_name | Identification (biology) |
| keywords[5].id | https://openalex.org/keywords/detector |
| keywords[5].score | 0.5770622491836548 |
| keywords[5].display_name | Detector |
| keywords[6].id | https://openalex.org/keywords/video-tracking |
| keywords[6].score | 0.5731756687164307 |
| keywords[6].display_name | Video tracking |
| keywords[7].id | https://openalex.org/keywords/frame |
| keywords[7].score | 0.5705208778381348 |
| keywords[7].display_name | Frame (networking) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.5315715074539185 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.5224229693412781 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.5084699392318726 |
| keywords[10].display_name | Task (project management) |
| keywords[11].id | https://openalex.org/keywords/process |
| keywords[11].score | 0.47504663467407227 |
| keywords[11].display_name | Process (computing) |
| keywords[12].id | https://openalex.org/keywords/tracking |
| keywords[12].score | 0.4582679569721222 |
| keywords[12].display_name | Tracking (education) |
| keywords[13].id | https://openalex.org/keywords/frame-rate |
| keywords[13].score | 0.4248751997947693 |
| keywords[13].display_name | Frame rate |
| keywords[14].id | https://openalex.org/keywords/real-time-computing |
| keywords[14].score | 0.3364364504814148 |
| keywords[14].display_name | Real-time computing |
| keywords[15].id | https://openalex.org/keywords/pattern-recognition |
| keywords[15].score | 0.22374090552330017 |
| keywords[15].display_name | Pattern recognition (psychology) |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.12224507331848145 |
| keywords[16].display_name | Engineering |
| keywords[17].id | https://openalex.org/keywords/telecommunications |
| keywords[17].score | 0.07880523800849915 |
| keywords[17].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/bigdata52589.2021.9671378 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363607718 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2021 IEEE International Conference on Big Data (Big Data) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE International Conference on Big Data (Big Data) |
| locations[0].landing_page_url | https://doi.org/10.1109/bigdata52589.2021.9671378 |
| locations[1].id | pmh:oai:dro.dur.ac.uk.OAI2:34805 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400188 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Durham Research Online (Durham University) |
| locations[1].source.host_organization | https://openalex.org/I190082696 |
| locations[1].source.host_organization_name | Durham University |
| locations[1].source.host_organization_lineage | https://openalex.org/I190082696 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Conference item |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | 2021 IEEE International Conference on Big Data (IEEE BigData 2021), Orlando, FL, USA, 15-18 December 2021 [Conference proceedings] |
| locations[1].landing_page_url | http://dro.dur.ac.uk/34805/ |
| locations[2].id | pmh:oai:durham-repository.worktribe.com:1138899 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | acceptedVersion |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://durham-repository.worktribe.com/output/1138899 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5006546528 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Steven Carrell |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I84884186 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing, Newcastle University, Newcastle Upon Tyne, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I84884186 |
| authorships[0].institutions[0].ror | https://ror.org/01kj2bm70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I84884186 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Newcastle University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Steven Carrell |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computing, Newcastle University, Newcastle Upon Tyne, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5013030358 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4242-4579 |
| authorships[1].author.display_name | Amir Atapour–Abarghouei |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Durham University, Durham, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I190082696 |
| authorships[1].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Durham University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Amir Atapour-Abarghouei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Durham University, Durham, United Kingdom |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://durham-repository.worktribe.com/output/1138899 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identification of Driver Phone Usage Violations via State-of-the-Art Object Detection with Tracking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2370205415, https://openalex.org/W4387493491, https://openalex.org/W2977517636, https://openalex.org/W2965594636, https://openalex.org/W1969179582, https://openalex.org/W1875422203, https://openalex.org/W4310880131, https://openalex.org/W2164674712, https://openalex.org/W2810129309, https://openalex.org/W3216382677 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:durham-repository.worktribe.com:1138899 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | acceptedVersion |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://durham-repository.worktribe.com/output/1138899 |
| primary_location.id | doi:10.1109/bigdata52589.2021.9671378 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363607718 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2021 IEEE International Conference on Big Data (Big Data) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE International Conference on Big Data (Big Data) |
| primary_location.landing_page_url | https://doi.org/10.1109/bigdata52589.2021.9671378 |
| publication_date | 2021-12-15 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6725924496, https://openalex.org/W2991384465, https://openalex.org/W2947027479, https://openalex.org/W2903681463, https://openalex.org/W6755676665, https://openalex.org/W4288083516, https://openalex.org/W2885779420, https://openalex.org/W2078343705, https://openalex.org/W3014977873, https://openalex.org/W6777046832, https://openalex.org/W6620707391, https://openalex.org/W3106643287, https://openalex.org/W2031489346, https://openalex.org/W2998014461, https://openalex.org/W2558580397, https://openalex.org/W2962721361, https://openalex.org/W3018757597, https://openalex.org/W2738029666, https://openalex.org/W2900661929, https://openalex.org/W2613718673, https://openalex.org/W3121480429, https://openalex.org/W2164598857, https://openalex.org/W3106250896, https://openalex.org/W2967198135, https://openalex.org/W3092166042, https://openalex.org/W2407521645, https://openalex.org/W2486323017, https://openalex.org/W2944165510, https://openalex.org/W1536680647, https://openalex.org/W2769291631, https://openalex.org/W2168356304, https://openalex.org/W2161969291, https://openalex.org/W2891566869, https://openalex.org/W2981380746, https://openalex.org/W2949847880, https://openalex.org/W2514087538, https://openalex.org/W2985778816, https://openalex.org/W4293584584, https://openalex.org/W2101223341, https://openalex.org/W2594258618, https://openalex.org/W2948429466, https://openalex.org/W639708223, https://openalex.org/W2796347433 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 26, 42, 55 |
| abstract_inverted_index.be | 25 |
| abstract_inverted_index.by | 81 |
| abstract_inverted_index.in | 29 |
| abstract_inverted_index.is | 138 |
| abstract_inverted_index.it | 12, 46 |
| abstract_inverted_index.of | 2, 20, 112, 123, 130 |
| abstract_inverted_index.to | 14, 48, 59, 64, 88, 125, 132, 146 |
| abstract_inverted_index.up | 124, 131 |
| abstract_inverted_index.we | 53 |
| abstract_inverted_index.Out | 111 |
| abstract_inverted_index.The | 0, 74 |
| abstract_inverted_index.all | 113 |
| abstract_inverted_index.and | 109 |
| abstract_inverted_index.are | 94 |
| abstract_inverted_index.can | 24 |
| abstract_inverted_index.for | 41, 71 |
| abstract_inverted_index.has | 7, 37 |
| abstract_inverted_index.our | 97 |
| abstract_inverted_index.the | 39, 69, 78, 85, 114, 119, 142 |
| abstract_inverted_index.use | 1 |
| abstract_inverted_index.way | 40 |
| abstract_inverted_index.FPS. | 134 |
| abstract_inverted_index.SSD, | 106 |
| abstract_inverted_index.also | 76, 139 |
| abstract_inverted_index.both | 30 |
| abstract_inverted_index.into | 141 |
| abstract_inverted_index.need | 70 |
| abstract_inverted_index.road | 15 |
| abstract_inverted_index.such | 22 |
| abstract_inverted_index.when | 5, 11, 45 |
| abstract_inverted_index.with | 61, 96 |
| abstract_inverted_index.work | 60 |
| abstract_inverted_index.RCNN, | 108 |
| abstract_inverted_index.YOLO, | 105 |
| abstract_inverted_index.avoid | 147 |
| abstract_inverted_index.comes | 13, 47 |
| abstract_inverted_index.frame | 128 |
| abstract_inverted_index.human | 72 |
| abstract_inverted_index.major | 9 |
| abstract_inverted_index.model | 144 |
| abstract_inverted_index.paved | 38 |
| abstract_inverted_index.rates | 129 |
| abstract_inverted_index.steps | 86 |
| abstract_inverted_index.this. | 90 |
| abstract_inverted_index.video | 49 |
| abstract_inverted_index.work, | 52 |
| abstract_inverted_index.∼30 | 133 |
| abstract_inverted_index.Faster | 107 |
| abstract_inverted_index.Twelve | 91 |
| abstract_inverted_index.caused | 80 |
| abstract_inverted_index.custom | 98 |
| abstract_inverted_index.driver | 66 |
| abstract_inverted_index.factor | 10 |
| abstract_inverted_index.issues | 79 |
| abstract_inverted_index.levels | 122 |
| abstract_inverted_index.models | 93 |
| abstract_inverted_index.modern | 31 |
| abstract_inverted_index.object | 32, 102, 115, 136 |
| abstract_inverted_index.phones | 4 |
| abstract_inverted_index.remedy | 89 |
| abstract_inverted_index.yields | 118 |
| abstract_inverted_index.∼96% | 126 |
| abstract_inverted_index.cameras | 63 |
| abstract_inverted_index.capture | 65 |
| abstract_inverted_index.dataset | 99 |
| abstract_inverted_index.driving | 6 |
| abstract_inverted_index.highest | 120 |
| abstract_inverted_index.logging | 148 |
| abstract_inverted_index.mobiles | 3 |
| abstract_inverted_index.popular | 101 |
| abstract_inverted_index.process | 19 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.traffic | 16 |
| abstract_inverted_index.without | 68 |
| abstract_inverted_index.DeepSORT | 135 |
| abstract_inverted_index.accuracy | 121 |
| abstract_inverted_index.approach | 44 |
| abstract_inverted_index.hardware | 36 |
| abstract_inverted_index.methods: | 104 |
| abstract_inverted_index.required | 87 |
| abstract_inverted_index.roadside | 62 |
| abstract_inverted_index.addresses | 77 |
| abstract_inverted_index.capturing | 21 |
| abstract_inverted_index.detection | 33, 103 |
| abstract_inverted_index.detectors | 116 |
| abstract_inverted_index.duplicate | 149 |
| abstract_inverted_index.incidents | 17 |
| abstract_inverted_index.CenterNet. | 110 |
| abstract_inverted_index.fine-tuned | 95 |
| abstract_inverted_index.integrated | 140 |
| abstract_inverted_index.introduces | 84 |
| abstract_inverted_index.pretrained | 92 |
| abstract_inverted_index.violations | 23 |
| abstract_inverted_index.windscreen | 82 |
| abstract_inverted_index.violations. | 150 |
| abstract_inverted_index.Advancements | 28 |
| abstract_inverted_index.been \na | 8 |
| abstract_inverted_index.In \nthis | 51 |
| abstract_inverted_index.and \nthe | 18 |
| abstract_inverted_index.intervention. | 73 |
| abstract_inverted_index.surveillance. | 50 |
| abstract_inverted_index.custom-trained | 56 |
| abstract_inverted_index.in \norder | 145 |
| abstract_inverted_index.best-performing | 143 |
| abstract_inverted_index.glare \nand | 83 |
| abstract_inverted_index.(AP10) \nand | 127 |
| abstract_inverted_index.high-performance | 35 |
| abstract_inverted_index.state-of-the-art | 57 |
| abstract_inverted_index.using \nfour | 100 |
| abstract_inverted_index.phone \nusage | 67 |
| abstract_inverted_index.tested, \nYOLO | 117 |
| abstract_inverted_index.frameworks \nand | 34 |
| abstract_inverted_index.more \nautomated | 43 |
| abstract_inverted_index.laborious \ntask. | 27 |
| abstract_inverted_index.object \ndetector | 58 |
| abstract_inverted_index.proposed \napproach | 75 |
| abstract_inverted_index.tracking \nalgorithm | 137 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.68627451 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |