Identification of High Leverage Points in Linear Functional Relationship Model Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.18187/pjsor.v16i3.2620
In a standard linear regression model the explanatory variables, , are considered to be fixed and hence assumed to be free from errors. But in reality, they are variables and consequently can be subjected to errors. In the regression literature there is a clear distinction between outlier in the - space or errors and the outlier in the X-space. The later one is popularly known as high leverage points. If the explanatory variables are subjected to gross error or any unusual pattern we call these observations as outliers in the - space or high leverage points. High leverage points often exert too much influence and consequently become responsible for misleading conclusion about the fitting of a regression model, causing multicollinearity problems, masking and/or swamping of outliers etc. Although a good number of works has been done on the identification of high leverage points in linear regression model, this is still a new and unsolved problem in linear functional relationship model. In this paper, we suggest a procedure for the identification of high leverage points based on deletion of a group of observations. The usefulness of the proposed method for the detection of multiple high leverage points is studied by some well-known data set and Monte Carlo simulations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18187/pjsor.v16i3.2620
- https://pjsor.com/pjsor/article/download/2620/1066
- OA Status
- diamond
- Cited By
- 1
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3083072744
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3083072744Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18187/pjsor.v16i3.2620Digital Object Identifier
- Title
-
Identification of High Leverage Points in Linear Functional Relationship ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-28Full publication date if available
- Authors
-
Abu Sayed Md. Al Mamun, A. H. M. Rahmatullah Imon, Abdul Ghapor Hussin, Yong Zulina Zubairi, Sohel RanaList of authors in order
- Landing page
-
https://doi.org/10.18187/pjsor.v16i3.2620Publisher landing page
- PDF URL
-
https://pjsor.com/pjsor/article/download/2620/1066Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://pjsor.com/pjsor/article/download/2620/1066Direct OA link when available
- Concepts
-
Leverage (statistics), Outlier, Multicollinearity, Mathematics, Linear regression, Econometrics, Regression analysis, Linear model, Regression diagnostic, Statistics, Bayesian multivariate linear regressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3083072744 |
|---|---|
| doi | https://doi.org/10.18187/pjsor.v16i3.2620 |
| ids.doi | https://doi.org/10.18187/pjsor.v16i3.2620 |
| ids.mag | 3083072744 |
| ids.openalex | https://openalex.org/W3083072744 |
| fwci | 0.24593193 |
| type | article |
| title | Identification of High Leverage Points in Linear Functional Relationship Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 500 |
| biblio.first_page | 491 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T10968 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Distribution Estimation and Applications |
| topics[2].id | https://openalex.org/T11443 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Advanced Statistical Process Monitoring |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153083717 |
| concepts[0].level | 2 |
| concepts[0].score | 0.85772705078125 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[0].display_name | Leverage (statistics) |
| concepts[1].id | https://openalex.org/C79337645 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7964596152305603 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[1].display_name | Outlier |
| concepts[2].id | https://openalex.org/C189285262 |
| concepts[2].level | 3 |
| concepts[2].score | 0.718757688999176 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1332350 |
| concepts[2].display_name | Multicollinearity |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6521494388580322 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C48921125 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6140837073326111 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[4].display_name | Linear regression |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5357763767242432 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C152877465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5212462544441223 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[6].display_name | Regression analysis |
| concepts[7].id | https://openalex.org/C163175372 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5156809091567993 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[7].display_name | Linear model |
| concepts[8].id | https://openalex.org/C57381214 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4720022678375244 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q55631393 |
| concepts[8].display_name | Regression diagnostic |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4250931143760681 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C64946054 |
| concepts[10].level | 3 |
| concepts[10].score | 0.11979052424430847 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4874476 |
| concepts[10].display_name | Bayesian multivariate linear regression |
| keywords[0].id | https://openalex.org/keywords/leverage |
| keywords[0].score | 0.85772705078125 |
| keywords[0].display_name | Leverage (statistics) |
| keywords[1].id | https://openalex.org/keywords/outlier |
| keywords[1].score | 0.7964596152305603 |
| keywords[1].display_name | Outlier |
| keywords[2].id | https://openalex.org/keywords/multicollinearity |
| keywords[2].score | 0.718757688999176 |
| keywords[2].display_name | Multicollinearity |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.6521494388580322 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/linear-regression |
| keywords[4].score | 0.6140837073326111 |
| keywords[4].display_name | Linear regression |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.5357763767242432 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.5212462544441223 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/linear-model |
| keywords[7].score | 0.5156809091567993 |
| keywords[7].display_name | Linear model |
| keywords[8].id | https://openalex.org/keywords/regression-diagnostic |
| keywords[8].score | 0.4720022678375244 |
| keywords[8].display_name | Regression diagnostic |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.4250931143760681 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/bayesian-multivariate-linear-regression |
| keywords[10].score | 0.11979052424430847 |
| keywords[10].display_name | Bayesian multivariate linear regression |
| language | en |
| locations[0].id | doi:10.18187/pjsor.v16i3.2620 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764549733 |
| locations[0].source.issn | 1816-2711, 2220-5810 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1816-2711 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Pakistan Journal of Statistics and Operation Research |
| locations[0].source.host_organization | https://openalex.org/P4310319273 |
| locations[0].source.host_organization_name | University of the Punjab |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319273 |
| locations[0].source.host_organization_lineage_names | University of the Punjab |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pjsor.com/pjsor/article/download/2620/1066 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Pakistan Journal of Statistics and Operation Research |
| locations[0].landing_page_url | https://doi.org/10.18187/pjsor.v16i3.2620 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090487551 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0468-8485 |
| authorships[0].author.display_name | Abu Sayed Md. Al Mamun |
| authorships[0].countries | BD |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I902853133 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Rajshahi |
| authorships[0].institutions[0].id | https://openalex.org/I902853133 |
| authorships[0].institutions[0].ror | https://ror.org/05nnyr510 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I902853133 |
| authorships[0].institutions[0].country_code | BD |
| authorships[0].institutions[0].display_name | University of Rajshahi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abu Sayed Md. Al Mamun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Rajshahi |
| authorships[1].author.id | https://openalex.org/A5066325035 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2767-2037 |
| authorships[1].author.display_name | A. H. M. Rahmatullah Imon |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I198089087 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA. |
| authorships[1].institutions[0].id | https://openalex.org/I198089087 |
| authorships[1].institutions[0].ror | https://ror.org/00k6tx165 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I198089087 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Ball State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | A.H.M. R. Imon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA. |
| authorships[2].author.id | https://openalex.org/A5108116863 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Abdul Ghapor Hussin |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55141112 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Science and Defence Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia. |
| authorships[2].institutions[0].id | https://openalex.org/I55141112 |
| authorships[2].institutions[0].ror | https://ror.org/00t53pv34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I55141112 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | National Defence University of Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | A. G. Hussin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Science and Defence Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia. |
| authorships[3].author.id | https://openalex.org/A5010169262 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6174-7285 |
| authorships[3].author.display_name | Yong Zulina Zubairi |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33849332 |
| authorships[3].affiliations[0].raw_affiliation_string | Mathematics Division, Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, Malaysia. |
| authorships[3].institutions[0].id | https://openalex.org/I33849332 |
| authorships[3].institutions[0].ror | https://ror.org/00rzspn62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33849332 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | University of Malaya |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Y. Z. Zubairi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Mathematics Division, Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, Malaysia. |
| authorships[4].author.id | https://openalex.org/A5090637538 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4103-6726 |
| authorships[4].author.display_name | Sohel Rana |
| authorships[4].countries | BD |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I885507782 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Applied Statistics, East West University, Dhaka, Bangladesh. |
| authorships[4].institutions[0].id | https://openalex.org/I885507782 |
| authorships[4].institutions[0].ror | https://ror.org/05p0tzt32 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I885507782 |
| authorships[4].institutions[0].country_code | BD |
| authorships[4].institutions[0].display_name | East West University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sohel Rana |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Applied Statistics, East West University, Dhaka, Bangladesh. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pjsor.com/pjsor/article/download/2620/1066 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identification of High Leverage Points in Linear Functional Relationship Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W3114202620, https://openalex.org/W3114452526, https://openalex.org/W2267026663, https://openalex.org/W3196020566, https://openalex.org/W3130447296, https://openalex.org/W3011404810, https://openalex.org/W875826547, https://openalex.org/W2101914902, https://openalex.org/W4390687192, https://openalex.org/W4309298396 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18187/pjsor.v16i3.2620 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764549733 |
| best_oa_location.source.issn | 1816-2711, 2220-5810 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1816-2711 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Pakistan Journal of Statistics and Operation Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310319273 |
| best_oa_location.source.host_organization_name | University of the Punjab |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319273 |
| best_oa_location.source.host_organization_lineage_names | University of the Punjab |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pjsor.com/pjsor/article/download/2620/1066 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Pakistan Journal of Statistics and Operation Research |
| best_oa_location.landing_page_url | https://doi.org/10.18187/pjsor.v16i3.2620 |
| primary_location.id | doi:10.18187/pjsor.v16i3.2620 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764549733 |
| primary_location.source.issn | 1816-2711, 2220-5810 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1816-2711 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Pakistan Journal of Statistics and Operation Research |
| primary_location.source.host_organization | https://openalex.org/P4310319273 |
| primary_location.source.host_organization_name | University of the Punjab |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319273 |
| primary_location.source.host_organization_lineage_names | University of the Punjab |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pjsor.com/pjsor/article/download/2620/1066 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Pakistan Journal of Statistics and Operation Research |
| primary_location.landing_page_url | https://doi.org/10.18187/pjsor.v16i3.2620 |
| publication_date | 2020-08-28 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W4231247876, https://openalex.org/W2487741598, https://openalex.org/W3143949042, https://openalex.org/W2021917714, https://openalex.org/W2068383009, https://openalex.org/W2123131881, https://openalex.org/W6646310876, https://openalex.org/W6651779810, https://openalex.org/W2489822048, https://openalex.org/W1979344365, https://openalex.org/W2072376239, https://openalex.org/W2997794628, https://openalex.org/W2739206063, https://openalex.org/W2409697417, https://openalex.org/W2498631646, https://openalex.org/W2021120591, https://openalex.org/W1986127385, https://openalex.org/W2089280788, https://openalex.org/W2912688645 |
| referenced_works_count | 19 |
| abstract_inverted_index., | 9 |
| abstract_inverted_index.- | 49, 90 |
| abstract_inverted_index.a | 1, 42, 115, 128, 150, 165, 178 |
| abstract_inverted_index.If | 69 |
| abstract_inverted_index.In | 0, 36, 160 |
| abstract_inverted_index.as | 65, 86 |
| abstract_inverted_index.be | 13, 19, 32 |
| abstract_inverted_index.by | 198 |
| abstract_inverted_index.in | 24, 47, 56, 88, 143, 155 |
| abstract_inverted_index.is | 41, 62, 148, 196 |
| abstract_inverted_index.of | 114, 124, 131, 139, 170, 177, 180, 184, 191 |
| abstract_inverted_index.on | 136, 175 |
| abstract_inverted_index.or | 51, 78, 92 |
| abstract_inverted_index.to | 12, 18, 34, 75 |
| abstract_inverted_index.we | 82, 163 |
| abstract_inverted_index.But | 23 |
| abstract_inverted_index.The | 59, 182 |
| abstract_inverted_index.and | 15, 29, 53, 104, 152, 203 |
| abstract_inverted_index.any | 79 |
| abstract_inverted_index.are | 10, 27, 73 |
| abstract_inverted_index.can | 31 |
| abstract_inverted_index.for | 108, 167, 188 |
| abstract_inverted_index.has | 133 |
| abstract_inverted_index.new | 151 |
| abstract_inverted_index.one | 61 |
| abstract_inverted_index.set | 202 |
| abstract_inverted_index.the | 6, 37, 48, 54, 57, 70, 89, 112, 137, 168, 185, 189 |
| abstract_inverted_index.too | 101 |
| abstract_inverted_index.High | 96 |
| abstract_inverted_index.been | 134 |
| abstract_inverted_index.call | 83 |
| abstract_inverted_index.data | 201 |
| abstract_inverted_index.done | 135 |
| abstract_inverted_index.etc. | 126 |
| abstract_inverted_index.free | 20 |
| abstract_inverted_index.from | 21 |
| abstract_inverted_index.good | 129 |
| abstract_inverted_index.high | 66, 93, 140, 171, 193 |
| abstract_inverted_index.much | 102 |
| abstract_inverted_index.some | 199 |
| abstract_inverted_index.they | 26 |
| abstract_inverted_index.this | 147, 161 |
| abstract_inverted_index.Carlo | 205 |
| abstract_inverted_index.Monte | 204 |
| abstract_inverted_index.about | 111 |
| abstract_inverted_index.based | 174 |
| abstract_inverted_index.clear | 43 |
| abstract_inverted_index.error | 77 |
| abstract_inverted_index.exert | 100 |
| abstract_inverted_index.fixed | 14 |
| abstract_inverted_index.gross | 76 |
| abstract_inverted_index.group | 179 |
| abstract_inverted_index.hence | 16 |
| abstract_inverted_index.known | 64 |
| abstract_inverted_index.later | 60 |
| abstract_inverted_index.model | 5 |
| abstract_inverted_index.often | 99 |
| abstract_inverted_index.space | 50, 91 |
| abstract_inverted_index.still | 149 |
| abstract_inverted_index.there | 40 |
| abstract_inverted_index.these | 84 |
| abstract_inverted_index.works | 132 |
| abstract_inverted_index.and/or | 122 |
| abstract_inverted_index.become | 106 |
| abstract_inverted_index.errors | 52 |
| abstract_inverted_index.linear | 3, 144, 156 |
| abstract_inverted_index.method | 187 |
| abstract_inverted_index.model, | 117, 146 |
| abstract_inverted_index.model. | 159 |
| abstract_inverted_index.number | 130 |
| abstract_inverted_index.paper, | 162 |
| abstract_inverted_index.points | 98, 142, 173, 195 |
| abstract_inverted_index.assumed | 17 |
| abstract_inverted_index.between | 45 |
| abstract_inverted_index.causing | 118 |
| abstract_inverted_index.errors. | 22, 35 |
| abstract_inverted_index.fitting | 113 |
| abstract_inverted_index.masking | 121 |
| abstract_inverted_index.outlier | 46, 55 |
| abstract_inverted_index.pattern | 81 |
| abstract_inverted_index.points. | 68, 95 |
| abstract_inverted_index.problem | 154 |
| abstract_inverted_index.studied | 197 |
| abstract_inverted_index.suggest | 164 |
| abstract_inverted_index.unusual | 80 |
| abstract_inverted_index.Although | 127 |
| abstract_inverted_index.X-space. | 58 |
| abstract_inverted_index.deletion | 176 |
| abstract_inverted_index.leverage | 67, 94, 97, 141, 172, 194 |
| abstract_inverted_index.multiple | 192 |
| abstract_inverted_index.outliers | 87, 125 |
| abstract_inverted_index.proposed | 186 |
| abstract_inverted_index.reality, | 25 |
| abstract_inverted_index.standard | 2 |
| abstract_inverted_index.swamping | 123 |
| abstract_inverted_index.unsolved | 153 |
| abstract_inverted_index.detection | 190 |
| abstract_inverted_index.influence | 103 |
| abstract_inverted_index.popularly | 63 |
| abstract_inverted_index.problems, | 120 |
| abstract_inverted_index.procedure | 166 |
| abstract_inverted_index.subjected | 33, 74 |
| abstract_inverted_index.variables | 28, 72 |
| abstract_inverted_index.conclusion | 110 |
| abstract_inverted_index.considered | 11 |
| abstract_inverted_index.functional | 157 |
| abstract_inverted_index.literature | 39 |
| abstract_inverted_index.misleading | 109 |
| abstract_inverted_index.regression | 4, 38, 116, 145 |
| abstract_inverted_index.usefulness | 183 |
| abstract_inverted_index.variables, | 8 |
| abstract_inverted_index.well-known | 200 |
| abstract_inverted_index.distinction | 44 |
| abstract_inverted_index.explanatory | 7, 71 |
| abstract_inverted_index.responsible | 107 |
| abstract_inverted_index.consequently | 30, 105 |
| abstract_inverted_index.observations | 85 |
| abstract_inverted_index.relationship | 158 |
| abstract_inverted_index.simulations. | 206 |
| abstract_inverted_index.observations. | 181 |
| abstract_inverted_index.identification | 138, 169 |
| abstract_inverted_index.multicollinearity | 119 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.57945281 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |