Identification of Paddy Stages from Images using Deep Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.56093/jisas.v78i1.9
Rice, a crucial global staple, is integral to food security. Precise identification of paddy growth stages, booting, heading, anthesis, grain filling, and grain maturity is vital for agricultural decisions. However, a gap exists in recognizing these stages using red-green-blue (RGB) images. This study uses state-of-the-art computer vision and deep learning classification (Convolutional Neural Networks) algorithms to address this gap. Among the studied algorithms, EfficientNet_B0 achieved an impressive 82.8% overall accuracy. Notably, increasing image size from 64X64 pixels to 128X128 pixels significantly enhanced accuracy. A detailed assessment of growth stages revealed varying accuracy levels, with boot leaf being the most accurately detected (95.1%) and anthesis being the most challenging (72.28%). This work significantly advances automated monitoring, empowering researchers in real-time decision-making.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.56093/jisas.v78i1.9
- https://epubs.icar.org.in/index.php/JISAS/article/download/151436/54515
- OA Status
- bronze
- Cited By
- 2
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396807294
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396807294Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.56093/jisas.v78i1.9Digital Object Identifier
- Title
-
Identification of Paddy Stages from Images using Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-10Full publication date if available
- Authors
-
Himanshushekhar Chaurasia, Alka Arora, Dhandapani Raju, Sudeep Marwaha, Viswanathan Chinnusamy, Rajni Jain, Mrinmoy Ray, Rabi Narayan SahooList of authors in order
- Landing page
-
https://doi.org/10.56093/jisas.v78i1.9Publisher landing page
- PDF URL
-
https://epubs.icar.org.in/index.php/JISAS/article/download/151436/54515Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://epubs.icar.org.in/index.php/JISAS/article/download/151436/54515Direct OA link when available
- Concepts
-
RGB color model, Artificial intelligence, Deep learning, Convolutional neural network, Identification (biology), Pixel, Computer science, Anthesis, Agricultural engineering, Maturity (psychological), Computer vision, Machine learning, Agronomy, Engineering, Cultivar, Developmental psychology, Biology, Psychology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396807294 |
|---|---|
| doi | https://doi.org/10.56093/jisas.v78i1.9 |
| ids.doi | https://doi.org/10.56093/jisas.v78i1.9 |
| ids.openalex | https://openalex.org/W4396807294 |
| fwci | 1.56409815 |
| type | article |
| title | Identification of Paddy Stages from Images using Deep Learning |
| biblio.issue | 1 |
| biblio.volume | 78 |
| biblio.last_page | 74 |
| biblio.first_page | 69 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9904999732971191 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T13142 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9505000114440918 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | GABA and Rice Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C82990744 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7320958375930786 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[0].display_name | RGB color model |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6684496402740479 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6601045727729797 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.611518383026123 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C116834253 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6079659461975098 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[4].display_name | Identification (biology) |
| concepts[5].id | https://openalex.org/C160633673 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6041412353515625 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[5].display_name | Pixel |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5903825759887695 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2780512892 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4548017978668213 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q593803 |
| concepts[7].display_name | Anthesis |
| concepts[8].id | https://openalex.org/C88463610 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4513406753540039 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[8].display_name | Agricultural engineering |
| concepts[9].id | https://openalex.org/C101433766 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42115819454193115 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3543263 |
| concepts[9].display_name | Maturity (psychological) |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37524646520614624 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33972281217575073 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C6557445 |
| concepts[12].level | 1 |
| concepts[12].score | 0.18976730108261108 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[12].display_name | Agronomy |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12181884050369263 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C197321923 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q4886 |
| concepts[14].display_name | Cultivar |
| concepts[15].id | https://openalex.org/C138496976 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q175002 |
| concepts[15].display_name | Developmental psychology |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C15744967 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[17].display_name | Psychology |
| concepts[18].id | https://openalex.org/C59822182 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[18].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/rgb-color-model |
| keywords[0].score | 0.7320958375930786 |
| keywords[0].display_name | RGB color model |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6684496402740479 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6601045727729797 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.611518383026123 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/identification |
| keywords[4].score | 0.6079659461975098 |
| keywords[4].display_name | Identification (biology) |
| keywords[5].id | https://openalex.org/keywords/pixel |
| keywords[5].score | 0.6041412353515625 |
| keywords[5].display_name | Pixel |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5903825759887695 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/anthesis |
| keywords[7].score | 0.4548017978668213 |
| keywords[7].display_name | Anthesis |
| keywords[8].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[8].score | 0.4513406753540039 |
| keywords[8].display_name | Agricultural engineering |
| keywords[9].id | https://openalex.org/keywords/maturity |
| keywords[9].score | 0.42115819454193115 |
| keywords[9].display_name | Maturity (psychological) |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.37524646520614624 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.33972281217575073 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/agronomy |
| keywords[12].score | 0.18976730108261108 |
| keywords[12].display_name | Agronomy |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.12181884050369263 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.56093/jisas.v78i1.9 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4393911789 |
| locations[0].source.issn | 0019-6363 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0019-6363 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the Indian Society of Agricultural Statistics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://epubs.icar.org.in/index.php/JISAS/article/download/151436/54515 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the Indian Society of Agricultural Statistics |
| locations[0].landing_page_url | https://doi.org/10.56093/jisas.v78i1.9 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5060459326 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-8682-627X |
| authorships[0].author.display_name | Himanshushekhar Chaurasia |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45509622 |
| authorships[0].affiliations[0].raw_affiliation_string | ICAR-Indian Agricultural Research Institute, New Delhi |
| authorships[0].institutions[0].id | https://openalex.org/I45509622 |
| authorships[0].institutions[0].ror | https://ror.org/01bzgdw81 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I179420787, https://openalex.org/I45509622 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Agricultural Research Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Himanshushekhar Chaurasia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ICAR-Indian Agricultural Research Institute, New Delhi |
| authorships[1].author.id | https://openalex.org/A5054714461 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0999-1077 |
| authorships[1].author.display_name | Alka Arora |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1141210 |
| authorships[1].affiliations[0].raw_affiliation_string | ICAR-Indian Agricultural Statistics Research Institute, New Delhi |
| authorships[1].institutions[0].id | https://openalex.org/I1141210 |
| authorships[1].institutions[0].ror | https://ror.org/03kkevc75 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1141210, https://openalex.org/I179420787 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Agricultural Statistics Research Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alka Arora |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | ICAR-Indian Agricultural Statistics Research Institute, New Delhi |
| authorships[2].author.id | https://openalex.org/A5010473867 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7988-3851 |
| authorships[2].author.display_name | Dhandapani Raju |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I45509622 |
| authorships[2].affiliations[0].raw_affiliation_string | ICAR-Indian Agricultural Research Institute, New Delhi |
| authorships[2].institutions[0].id | https://openalex.org/I45509622 |
| authorships[2].institutions[0].ror | https://ror.org/01bzgdw81 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I179420787, https://openalex.org/I45509622 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Agricultural Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dhandapani Raju |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | ICAR-Indian Agricultural Research Institute, New Delhi |
| authorships[3].author.id | https://openalex.org/A5033799923 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5962-9757 |
| authorships[3].author.display_name | Sudeep Marwaha |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1141210 |
| authorships[3].affiliations[0].raw_affiliation_string | ICAR-Indian Agricultural Statistics Research Institute, New Delhi |
| authorships[3].institutions[0].id | https://openalex.org/I1141210 |
| authorships[3].institutions[0].ror | https://ror.org/03kkevc75 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1141210, https://openalex.org/I179420787 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Agricultural Statistics Research Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sudeep Marwaha |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | ICAR-Indian Agricultural Statistics Research Institute, New Delhi |
| authorships[4].author.id | https://openalex.org/A5004149609 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2174-9064 |
| authorships[4].author.display_name | Viswanathan Chinnusamy |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I45509622 |
| authorships[4].affiliations[0].raw_affiliation_string | ICAR-Indian Agricultural Research Institute, New Delhi |
| authorships[4].institutions[0].id | https://openalex.org/I45509622 |
| authorships[4].institutions[0].ror | https://ror.org/01bzgdw81 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I179420787, https://openalex.org/I45509622 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Indian Agricultural Research Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Viswanathan Chinnusamy |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ICAR-Indian Agricultural Research Institute, New Delhi |
| authorships[5].author.id | https://openalex.org/A5037369549 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8493-7858 |
| authorships[5].author.display_name | Rajni Jain |
| authorships[5].countries | BG, IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210097901, https://openalex.org/I4210125578 |
| authorships[5].affiliations[0].raw_affiliation_string | ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi |
| authorships[5].institutions[0].id | https://openalex.org/I4210097901 |
| authorships[5].institutions[0].ror | https://ror.org/00xh3h995 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210097901, https://openalex.org/I4210163436 |
| authorships[5].institutions[0].country_code | BG |
| authorships[5].institutions[0].display_name | Institute of Agricultural Economics |
| authorships[5].institutions[1].id | https://openalex.org/I4210125578 |
| authorships[5].institutions[1].ror | https://ror.org/032fdft79 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210104593, https://openalex.org/I4210113036, https://openalex.org/I4210125578 |
| authorships[5].institutions[1].country_code | IT |
| authorships[5].institutions[1].display_name | Istituto Nazionale di Economia Agraria |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rajni Jain |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi |
| authorships[6].author.id | https://openalex.org/A5069687786 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1337-0348 |
| authorships[6].author.display_name | Mrinmoy Ray |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1141210 |
| authorships[6].affiliations[0].raw_affiliation_string | ICAR-Indian Agricultural Statistics Research Institute, New Delhi |
| authorships[6].institutions[0].id | https://openalex.org/I1141210 |
| authorships[6].institutions[0].ror | https://ror.org/03kkevc75 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I1141210, https://openalex.org/I179420787 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Indian Agricultural Statistics Research Institute |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mrinmoy Ray |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | ICAR-Indian Agricultural Statistics Research Institute, New Delhi |
| authorships[7].author.id | https://openalex.org/A5041830928 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6430-3842 |
| authorships[7].author.display_name | Rabi Narayan Sahoo |
| authorships[7].countries | IN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I45509622 |
| authorships[7].affiliations[0].raw_affiliation_string | ICAR-Indian Agricultural Research Institute, New Delhi |
| authorships[7].institutions[0].id | https://openalex.org/I45509622 |
| authorships[7].institutions[0].ror | https://ror.org/01bzgdw81 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I179420787, https://openalex.org/I45509622 |
| authorships[7].institutions[0].country_code | IN |
| authorships[7].institutions[0].display_name | Indian Agricultural Research Institute |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Rabi Narayan Sahoo |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | ICAR-Indian Agricultural Research Institute, New Delhi |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://epubs.icar.org.in/index.php/JISAS/article/download/151436/54515 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identification of Paddy Stages from Images using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2019210880, https://openalex.org/W1981978360, https://openalex.org/W2082835043, https://openalex.org/W2122874877, https://openalex.org/W2736309895, https://openalex.org/W2182179596, https://openalex.org/W2389523914, https://openalex.org/W4205336522, https://openalex.org/W1984687638, https://openalex.org/W2017454765 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.56093/jisas.v78i1.9 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4393911789 |
| best_oa_location.source.issn | 0019-6363 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0019-6363 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of the Indian Society of Agricultural Statistics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://epubs.icar.org.in/index.php/JISAS/article/download/151436/54515 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the Indian Society of Agricultural Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.56093/jisas.v78i1.9 |
| primary_location.id | doi:10.56093/jisas.v78i1.9 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4393911789 |
| primary_location.source.issn | 0019-6363 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0019-6363 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the Indian Society of Agricultural Statistics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://epubs.icar.org.in/index.php/JISAS/article/download/151436/54515 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the Indian Society of Agricultural Statistics |
| primary_location.landing_page_url | https://doi.org/10.56093/jisas.v78i1.9 |
| publication_date | 2024-05-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2767767563, https://openalex.org/W4309912881, https://openalex.org/W4224053822, https://openalex.org/W2194775991, https://openalex.org/W2963040864, https://openalex.org/W2922623026, https://openalex.org/W2163605009, https://openalex.org/W4200614249, https://openalex.org/W4312765729, https://openalex.org/W2978577964, https://openalex.org/W3126911992, https://openalex.org/W4324257920, https://openalex.org/W2970971581, https://openalex.org/W4295312788, https://openalex.org/W2963163009, https://openalex.org/W2962835968, https://openalex.org/W2097117768, https://openalex.org/W2955425717, https://openalex.org/W3112157753 |
| referenced_works_count | 19 |
| abstract_inverted_index.A | 83 |
| abstract_inverted_index.a | 1, 30 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.in | 33, 117 |
| abstract_inverted_index.is | 5, 24 |
| abstract_inverted_index.of | 12, 86 |
| abstract_inverted_index.to | 7, 55, 77 |
| abstract_inverted_index.and | 21, 47, 102 |
| abstract_inverted_index.for | 26 |
| abstract_inverted_index.gap | 31 |
| abstract_inverted_index.the | 60, 97, 105 |
| abstract_inverted_index.This | 41, 109 |
| abstract_inverted_index.boot | 94 |
| abstract_inverted_index.deep | 48 |
| abstract_inverted_index.food | 8 |
| abstract_inverted_index.from | 74 |
| abstract_inverted_index.gap. | 58 |
| abstract_inverted_index.leaf | 95 |
| abstract_inverted_index.most | 98, 106 |
| abstract_inverted_index.size | 73 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.uses | 43 |
| abstract_inverted_index.with | 93 |
| abstract_inverted_index.work | 110 |
| abstract_inverted_index.(RGB) | 39 |
| abstract_inverted_index.64X64 | 75 |
| abstract_inverted_index.82.8% | 67 |
| abstract_inverted_index.Among | 59 |
| abstract_inverted_index.Rice, | 0 |
| abstract_inverted_index.being | 96, 104 |
| abstract_inverted_index.grain | 19, 22 |
| abstract_inverted_index.image | 72 |
| abstract_inverted_index.paddy | 13 |
| abstract_inverted_index.study | 42 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.using | 37 |
| abstract_inverted_index.vital | 25 |
| abstract_inverted_index.Neural | 52 |
| abstract_inverted_index.exists | 32 |
| abstract_inverted_index.global | 3 |
| abstract_inverted_index.growth | 14, 87 |
| abstract_inverted_index.pixels | 76, 79 |
| abstract_inverted_index.stages | 36, 88 |
| abstract_inverted_index.vision | 46 |
| abstract_inverted_index.(95.1%) | 101 |
| abstract_inverted_index.128X128 | 78 |
| abstract_inverted_index.Precise | 10 |
| abstract_inverted_index.address | 56 |
| abstract_inverted_index.crucial | 2 |
| abstract_inverted_index.images. | 40 |
| abstract_inverted_index.levels, | 92 |
| abstract_inverted_index.overall | 68 |
| abstract_inverted_index.stages, | 15 |
| abstract_inverted_index.staple, | 4 |
| abstract_inverted_index.studied | 61 |
| abstract_inverted_index.varying | 90 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.Notably, | 70 |
| abstract_inverted_index.accuracy | 91 |
| abstract_inverted_index.achieved | 64 |
| abstract_inverted_index.advances | 112 |
| abstract_inverted_index.anthesis | 103 |
| abstract_inverted_index.booting, | 16 |
| abstract_inverted_index.computer | 45 |
| abstract_inverted_index.detailed | 84 |
| abstract_inverted_index.detected | 100 |
| abstract_inverted_index.enhanced | 81 |
| abstract_inverted_index.filling, | 20 |
| abstract_inverted_index.heading, | 17 |
| abstract_inverted_index.integral | 6 |
| abstract_inverted_index.learning | 49 |
| abstract_inverted_index.maturity | 23 |
| abstract_inverted_index.revealed | 89 |
| abstract_inverted_index.(72.28%). | 108 |
| abstract_inverted_index.Networks) | 53 |
| abstract_inverted_index.accuracy. | 69, 82 |
| abstract_inverted_index.anthesis, | 18 |
| abstract_inverted_index.automated | 113 |
| abstract_inverted_index.real-time | 118 |
| abstract_inverted_index.security. | 9 |
| abstract_inverted_index.accurately | 99 |
| abstract_inverted_index.algorithms | 54 |
| abstract_inverted_index.assessment | 85 |
| abstract_inverted_index.decisions. | 28 |
| abstract_inverted_index.empowering | 115 |
| abstract_inverted_index.impressive | 66 |
| abstract_inverted_index.increasing | 71 |
| abstract_inverted_index.algorithms, | 62 |
| abstract_inverted_index.challenging | 107 |
| abstract_inverted_index.monitoring, | 114 |
| abstract_inverted_index.recognizing | 34 |
| abstract_inverted_index.researchers | 116 |
| abstract_inverted_index.agricultural | 27 |
| abstract_inverted_index.significantly | 80, 111 |
| abstract_inverted_index.(Convolutional | 51 |
| abstract_inverted_index.classification | 50 |
| abstract_inverted_index.identification | 11 |
| abstract_inverted_index.red-green-blue | 38 |
| abstract_inverted_index.EfficientNet_B0 | 63 |
| abstract_inverted_index.decision-making. | 119 |
| abstract_inverted_index.state-of-the-art | 44 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.84862221 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |