Identification of the nonlinear steering dynamics of an autonomous vehicle Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2105.04529
Automated driving applications require accurate vehicle specific models to precisely predict and control the motion dynamics. However, modern vehicles have a wide array of digital and mechatronic components that are difficult to model, manufactures do not disclose all details required for modelling and even existing models of subcomponents require coefficient estimation to match the specific characteristics of each vehicle and their change over time. Hence, it is attractive to use data-driven modelling to capture the relevant vehicle dynamics and synthesise model-based control solutions. In this paper, we address identification of the steering system of an autonomous car based on measured data. We show that the underlying dynamics are highly nonlinear and challenging to be captured, necessitating the use of data-driven methods that fuse the approximation capabilities of learning and the efficiency of dynamic system identification. We demonstrate that such a neural network based subspace-encoder method can successfully capture the underlying dynamics while other methods fall short to provide reliable results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2105.04529
- https://arxiv.org/pdf/2105.04529
- OA Status
- green
- Cited By
- 2
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3162689122
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3162689122Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2105.04529Digital Object Identifier
- Title
-
Identification of the nonlinear steering dynamics of an autonomous vehicleWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-10Full publication date if available
- Authors
-
Gábor Rödönyi, Gerben I. Beintema, Roland Tóth, Maarten Schoukens, Dániel Pup, Ádám Kisari, Zs. Vígh, Péter Kőrös, Alexandros Soumelidis, J. BokorList of authors in order
- Landing page
-
https://arxiv.org/abs/2105.04529Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2105.04529Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2105.04529Direct OA link when available
- Concepts
-
Computer science, Identification (biology), Vehicle dynamics, Subspace topology, Mechatronics, System identification, Control engineering, Nonlinear system, System dynamics, Artificial neural network, Artificial intelligence, Engineering, Data modeling, Automotive engineering, Quantum mechanics, Database, Botany, Biology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3162689122 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2105.04529 |
| ids.doi | https://doi.org/10.48550/arxiv.2105.04529 |
| ids.mag | 3162689122 |
| ids.openalex | https://openalex.org/W3162689122 |
| fwci | |
| type | preprint |
| title | Identification of the nonlinear steering dynamics of an autonomous vehicle |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11236 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9959999918937683 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Control Systems and Identification |
| topics[1].id | https://openalex.org/T12810 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Real-time simulation and control systems |
| topics[2].id | https://openalex.org/T12814 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.993399977684021 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6678876280784607 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C116834253 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6627269387245178 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[1].display_name | Identification (biology) |
| concepts[2].id | https://openalex.org/C79487989 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6201009750366211 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q934680 |
| concepts[2].display_name | Vehicle dynamics |
| concepts[3].id | https://openalex.org/C32834561 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6072046756744385 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[3].display_name | Subspace topology |
| concepts[4].id | https://openalex.org/C28704281 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5957810282707214 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q180165 |
| concepts[4].display_name | Mechatronics |
| concepts[5].id | https://openalex.org/C119247159 |
| concepts[5].level | 3 |
| concepts[5].score | 0.573647141456604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1366192 |
| concepts[5].display_name | System identification |
| concepts[6].id | https://openalex.org/C133731056 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5585111379623413 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[6].display_name | Control engineering |
| concepts[7].id | https://openalex.org/C158622935 |
| concepts[7].level | 2 |
| concepts[7].score | 0.536833643913269 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[7].display_name | Nonlinear system |
| concepts[8].id | https://openalex.org/C77405623 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5203587412834167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q598451 |
| concepts[8].display_name | System dynamics |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46799203753471375 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4093017280101776 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.26278698444366455 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C67186912 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2579004764556885 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[12].display_name | Data modeling |
| concepts[13].id | https://openalex.org/C171146098 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07828027009963989 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[13].display_name | Automotive engineering |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C77088390 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[15].display_name | Database |
| concepts[16].id | https://openalex.org/C59822182 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[16].display_name | Botany |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6678876280784607 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/identification |
| keywords[1].score | 0.6627269387245178 |
| keywords[1].display_name | Identification (biology) |
| keywords[2].id | https://openalex.org/keywords/vehicle-dynamics |
| keywords[2].score | 0.6201009750366211 |
| keywords[2].display_name | Vehicle dynamics |
| keywords[3].id | https://openalex.org/keywords/subspace-topology |
| keywords[3].score | 0.6072046756744385 |
| keywords[3].display_name | Subspace topology |
| keywords[4].id | https://openalex.org/keywords/mechatronics |
| keywords[4].score | 0.5957810282707214 |
| keywords[4].display_name | Mechatronics |
| keywords[5].id | https://openalex.org/keywords/system-identification |
| keywords[5].score | 0.573647141456604 |
| keywords[5].display_name | System identification |
| keywords[6].id | https://openalex.org/keywords/control-engineering |
| keywords[6].score | 0.5585111379623413 |
| keywords[6].display_name | Control engineering |
| keywords[7].id | https://openalex.org/keywords/nonlinear-system |
| keywords[7].score | 0.536833643913269 |
| keywords[7].display_name | Nonlinear system |
| keywords[8].id | https://openalex.org/keywords/system-dynamics |
| keywords[8].score | 0.5203587412834167 |
| keywords[8].display_name | System dynamics |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.46799203753471375 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.4093017280101776 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.26278698444366455 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/data-modeling |
| keywords[12].score | 0.2579004764556885 |
| keywords[12].display_name | Data modeling |
| keywords[13].id | https://openalex.org/keywords/automotive-engineering |
| keywords[13].score | 0.07828027009963989 |
| keywords[13].display_name | Automotive engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2105.04529 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2105.04529 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2105.04529 |
| locations[1].id | doi:10.48550/arxiv.2105.04529 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2105.04529 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089528635 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9178-3228 |
| authorships[0].author.display_name | Gábor Rödönyi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | G. Rödönyi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5042996044 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7822-6283 |
| authorships[1].author.display_name | Gerben I. Beintema |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | G. I. Beintema |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088619613 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7570-6129 |
| authorships[2].author.display_name | Roland Tóth |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | R. Tóth |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5056957450 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4904-1255 |
| authorships[3].author.display_name | Maarten Schoukens |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | M. Schoukens |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5048721825 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Dániel Pup |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | D. Pup |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5041788289 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0692-3204 |
| authorships[5].author.display_name | Ádám Kisari |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Á. Kisari |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5015648680 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Zs. Vígh |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zs. Vígh |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5067798844 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4389-6666 |
| authorships[7].author.display_name | Péter Kőrös |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | P. Kőrös |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5019018885 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0067-7746 |
| authorships[8].author.display_name | Alexandros Soumelidis |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | A. Soumelidis |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5000834169 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-3461-4807 |
| authorships[9].author.display_name | J. Bokor |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | J. Bokor |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2105.04529 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identification of the nonlinear steering dynamics of an autonomous vehicle |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11236 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9959999918937683 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Control Systems and Identification |
| related_works | https://openalex.org/W2913189039, https://openalex.org/W1889691171, https://openalex.org/W2320156573, https://openalex.org/W1480508098, https://openalex.org/W2141538351, https://openalex.org/W2074116088, https://openalex.org/W2053946710, https://openalex.org/W1997118413, https://openalex.org/W2189300986, https://openalex.org/W2057856234 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2105.04529 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2105.04529 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2105.04529 |
| primary_location.id | pmh:oai:arXiv.org:2105.04529 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2105.04529 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2105.04529 |
| publication_date | 2021-05-10 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3154866094, https://openalex.org/W2152206601, https://openalex.org/W2921272787, https://openalex.org/W2407429584, https://openalex.org/W3042249896, https://openalex.org/W3105252106, https://openalex.org/W2507898671, https://openalex.org/W2605096448, https://openalex.org/W3009122032, https://openalex.org/W2963598509, https://openalex.org/W2159680624, https://openalex.org/W3155759613, https://openalex.org/W3137062118, https://openalex.org/W2950016430, https://openalex.org/W2127472055, https://openalex.org/W1522301498, https://openalex.org/W2093604883, https://openalex.org/W1965324089, https://openalex.org/W1746819321 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 20, 139 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.We | 101, 135 |
| abstract_inverted_index.an | 94 |
| abstract_inverted_index.be | 113 |
| abstract_inverted_index.do | 34 |
| abstract_inverted_index.is | 66 |
| abstract_inverted_index.it | 65 |
| abstract_inverted_index.of | 23, 46, 56, 89, 93, 118, 126, 131 |
| abstract_inverted_index.on | 98 |
| abstract_inverted_index.to | 8, 31, 51, 68, 72, 112, 156 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.all | 37 |
| abstract_inverted_index.and | 11, 25, 42, 59, 78, 110, 128 |
| abstract_inverted_index.are | 29, 107 |
| abstract_inverted_index.can | 145 |
| abstract_inverted_index.car | 96 |
| abstract_inverted_index.for | 40 |
| abstract_inverted_index.not | 35 |
| abstract_inverted_index.the | 13, 53, 74, 90, 104, 116, 123, 129, 148 |
| abstract_inverted_index.use | 69, 117 |
| abstract_inverted_index.each | 57 |
| abstract_inverted_index.even | 43 |
| abstract_inverted_index.fall | 154 |
| abstract_inverted_index.fuse | 122 |
| abstract_inverted_index.have | 19 |
| abstract_inverted_index.over | 62 |
| abstract_inverted_index.show | 102 |
| abstract_inverted_index.such | 138 |
| abstract_inverted_index.that | 28, 103, 121, 137 |
| abstract_inverted_index.this | 84 |
| abstract_inverted_index.wide | 21 |
| abstract_inverted_index.array | 22 |
| abstract_inverted_index.based | 97, 142 |
| abstract_inverted_index.data. | 100 |
| abstract_inverted_index.match | 52 |
| abstract_inverted_index.other | 152 |
| abstract_inverted_index.short | 155 |
| abstract_inverted_index.their | 60 |
| abstract_inverted_index.time. | 63 |
| abstract_inverted_index.while | 151 |
| abstract_inverted_index.Hence, | 64 |
| abstract_inverted_index.change | 61 |
| abstract_inverted_index.highly | 108 |
| abstract_inverted_index.method | 144 |
| abstract_inverted_index.model, | 32 |
| abstract_inverted_index.models | 7, 45 |
| abstract_inverted_index.modern | 17 |
| abstract_inverted_index.motion | 14 |
| abstract_inverted_index.neural | 140 |
| abstract_inverted_index.paper, | 85 |
| abstract_inverted_index.system | 92, 133 |
| abstract_inverted_index.address | 87 |
| abstract_inverted_index.capture | 73, 147 |
| abstract_inverted_index.control | 12, 81 |
| abstract_inverted_index.details | 38 |
| abstract_inverted_index.digital | 24 |
| abstract_inverted_index.driving | 1 |
| abstract_inverted_index.dynamic | 132 |
| abstract_inverted_index.methods | 120, 153 |
| abstract_inverted_index.network | 141 |
| abstract_inverted_index.predict | 10 |
| abstract_inverted_index.provide | 157 |
| abstract_inverted_index.require | 3, 48 |
| abstract_inverted_index.vehicle | 5, 58, 76 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.accurate | 4 |
| abstract_inverted_index.disclose | 36 |
| abstract_inverted_index.dynamics | 77, 106, 150 |
| abstract_inverted_index.existing | 44 |
| abstract_inverted_index.learning | 127 |
| abstract_inverted_index.measured | 99 |
| abstract_inverted_index.relevant | 75 |
| abstract_inverted_index.reliable | 158 |
| abstract_inverted_index.required | 39 |
| abstract_inverted_index.results. | 159 |
| abstract_inverted_index.specific | 6, 54 |
| abstract_inverted_index.steering | 91 |
| abstract_inverted_index.vehicles | 18 |
| abstract_inverted_index.Automated | 0 |
| abstract_inverted_index.captured, | 114 |
| abstract_inverted_index.difficult | 30 |
| abstract_inverted_index.dynamics. | 15 |
| abstract_inverted_index.modelling | 41, 71 |
| abstract_inverted_index.nonlinear | 109 |
| abstract_inverted_index.precisely | 9 |
| abstract_inverted_index.attractive | 67 |
| abstract_inverted_index.autonomous | 95 |
| abstract_inverted_index.components | 27 |
| abstract_inverted_index.efficiency | 130 |
| abstract_inverted_index.estimation | 50 |
| abstract_inverted_index.solutions. | 82 |
| abstract_inverted_index.synthesise | 79 |
| abstract_inverted_index.underlying | 105, 149 |
| abstract_inverted_index.challenging | 111 |
| abstract_inverted_index.coefficient | 49 |
| abstract_inverted_index.data-driven | 70, 119 |
| abstract_inverted_index.demonstrate | 136 |
| abstract_inverted_index.mechatronic | 26 |
| abstract_inverted_index.model-based | 80 |
| abstract_inverted_index.applications | 2 |
| abstract_inverted_index.capabilities | 125 |
| abstract_inverted_index.manufactures | 33 |
| abstract_inverted_index.successfully | 146 |
| abstract_inverted_index.approximation | 124 |
| abstract_inverted_index.necessitating | 115 |
| abstract_inverted_index.subcomponents | 47 |
| abstract_inverted_index.identification | 88 |
| abstract_inverted_index.characteristics | 55 |
| abstract_inverted_index.identification. | 134 |
| abstract_inverted_index.subspace-encoder | 143 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |