Identification of Time-Varying External Force Using Group Sparse Regularization and Redundant Dictionary Article Swipe
How to accurately identify unknown time-varying external force from measured structural responses is an important engineering problem, which is critical for assessing the safety condition of the structure. In the context of a few available accelerometers, this paper proposes a novel time-varying external force identification method using group sparse regularization based on the prior knowledge in the redundant dictionary. Firstly, the relationship between time-varying external force and acceleration responses is established, and a redundant dictionary is designed to create a sparse expression of external force. Then, the relevance of atoms in the redundant dictionary is revealed, and this prior knowledge is used to determine the group structures of atoms. As a result, a force identification governing equation is formulated, and the group sparse regularization is reasonably introduced to ensure the accuracy of the identified results. The contribution of this paper is that the group structures of atoms are reasonably determined based on prior knowledge, and the complexity in the process for identifying external force from measured acceleration responses is reduced. Finally, the effectiveness of the proposed method is demonstrated by numerical simulations and an experimental structure. The illustrated results show that, compared with the force identification method based on the standard l1-norm regularization, the proposed method can further improve the identified accuracy of unknown external force and greatly enhance the computational efficiency for the force identification problem.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23010151
- https://www.mdpi.com/1424-8220/23/1/151/pdf?version=1672798613
- OA Status
- gold
- Cited By
- 2
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313259656
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313259656Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23010151Digital Object Identifier
- Title
-
Identification of Time-Varying External Force Using Group Sparse Regularization and Redundant DictionaryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-23Full publication date if available
- Authors
-
Huanlin Liu, Hongwei MaList of authors in order
- Landing page
-
https://doi.org/10.3390/s23010151Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/1/151/pdf?version=1672798613Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/1/151/pdf?version=1672798613Direct OA link when available
- Concepts
-
Regularization (linguistics), Computer science, Identification (biology), Acceleration, Norm (philosophy), Algorithm, Artificial intelligence, Physics, Classical mechanics, Biology, Political science, Law, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313259656 |
|---|---|
| doi | https://doi.org/10.3390/s23010151 |
| ids.doi | https://doi.org/10.3390/s23010151 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36616748 |
| ids.openalex | https://openalex.org/W4313259656 |
| fwci | 0.28892254 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000465 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Algorithms |
| type | article |
| title | Identification of Time-Varying External Force Using Group Sparse Regularization and Redundant Dictionary |
| awards[0].id | https://openalex.org/G4578065314 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2019YFC1511005 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 1 |
| biblio.volume | 23 |
| biblio.last_page | 151 |
| biblio.first_page | 151 |
| topics[0].id | https://openalex.org/T10534 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Health Monitoring Techniques |
| topics[1].id | https://openalex.org/T10662 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2211 |
| topics[1].subfield.display_name | Mechanics of Materials |
| topics[1].display_name | Ultrasonics and Acoustic Wave Propagation |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9923999905586243 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2776135515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7237527966499329 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[0].display_name | Regularization (linguistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5124104619026184 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C116834253 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5077325105667114 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[2].display_name | Identification (biology) |
| concepts[3].id | https://openalex.org/C117896860 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48825764656066895 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11376 |
| concepts[3].display_name | Acceleration |
| concepts[4].id | https://openalex.org/C191795146 |
| concepts[4].level | 2 |
| concepts[4].score | 0.41098207235336304 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3878446 |
| concepts[4].display_name | Norm (philosophy) |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40737923979759216 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.26562291383743286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.12314033508300781 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C74650414 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[8].display_name | Classical mechanics |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C17744445 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[10].display_name | Political science |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/regularization |
| keywords[0].score | 0.7237527966499329 |
| keywords[0].display_name | Regularization (linguistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5124104619026184 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/identification |
| keywords[2].score | 0.5077325105667114 |
| keywords[2].display_name | Identification (biology) |
| keywords[3].id | https://openalex.org/keywords/acceleration |
| keywords[3].score | 0.48825764656066895 |
| keywords[3].display_name | Acceleration |
| keywords[4].id | https://openalex.org/keywords/norm |
| keywords[4].score | 0.41098207235336304 |
| keywords[4].display_name | Norm (philosophy) |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.40737923979759216 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.26562291383743286 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.12314033508300781 |
| keywords[7].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/s23010151 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/1/151/pdf?version=1672798613 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23010151 |
| locations[1].id | pmid:36616748 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36616748 |
| locations[2].id | pmh:oai:doaj.org/article:3f9a8c621bca41b29433bfe87b4f17a5 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 23, Iss 1, p 151 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/3f9a8c621bca41b29433bfe87b4f17a5 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/23/1/151/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 23; Issue 1; Pages: 151 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s23010151 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9823546 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9823546 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5004312322 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5558-6385 |
| authorships[0].author.display_name | Huanlin Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2799850029 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I87445476 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[0].affiliations[2].raw_affiliation_string | Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523808, China |
| authorships[0].institutions[0].id | https://openalex.org/I2799850029 |
| authorships[0].institutions[0].ror | https://ror.org/01m8p7q42 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799850029 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dongguan University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I87445476 |
| authorships[0].institutions[1].ror | https://ror.org/017zhmm22 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I87445476 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Xi'an Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huanlin Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523808, China, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China |
| authorships[1].author.id | https://openalex.org/A5104388153 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6159-3960 |
| authorships[1].author.display_name | Hongwei Ma |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523808, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I2799850029 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China |
| authorships[1].institutions[0].id | https://openalex.org/I2799850029 |
| authorships[1].institutions[0].ror | https://ror.org/01m8p7q42 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799850029 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Dongguan University of Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hongwei Ma |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523808, China, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/1/151/pdf?version=1672798613 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identification of Time-Varying External Force Using Group Sparse Regularization and Redundant Dictionary |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10534 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Health Monitoring Techniques |
| related_works | https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2565094479, https://openalex.org/W2390829436, https://openalex.org/W1989791859, https://openalex.org/W602859758, https://openalex.org/W1971289376, https://openalex.org/W2379101322, https://openalex.org/W2053286651, https://openalex.org/W1992553864 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s23010151 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/1/151/pdf?version=1672798613 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23010151 |
| primary_location.id | doi:10.3390/s23010151 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/1/151/pdf?version=1672798613 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23010151 |
| publication_date | 2022-12-23 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3133376435, https://openalex.org/W3197925500, https://openalex.org/W2327426043, https://openalex.org/W3036887137, https://openalex.org/W3194784873, https://openalex.org/W4281258180, https://openalex.org/W2763303954, https://openalex.org/W3084417819, https://openalex.org/W2887290052, https://openalex.org/W2021791880, https://openalex.org/W3039048397, https://openalex.org/W2083818016, https://openalex.org/W2017266178, https://openalex.org/W2339624705, https://openalex.org/W2583744849, https://openalex.org/W2498064653, https://openalex.org/W2613227922, https://openalex.org/W3158439948, https://openalex.org/W2934886426, https://openalex.org/W1981670624, https://openalex.org/W2042182432, https://openalex.org/W2026187522, https://openalex.org/W2891956775, https://openalex.org/W3019975194, https://openalex.org/W3005798491, https://openalex.org/W2995021567, https://openalex.org/W2252879494, https://openalex.org/W2101731775, https://openalex.org/W4281609128, https://openalex.org/W1835444282, https://openalex.org/W2740987085, https://openalex.org/W4307265339, https://openalex.org/W3049285465, https://openalex.org/W2910906471, https://openalex.org/W4280571471, https://openalex.org/W3165324317, https://openalex.org/W2799816224, https://openalex.org/W6782405634, https://openalex.org/W1998762105, https://openalex.org/W3082128007 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 32, 39, 72, 79, 110, 112 |
| abstract_inverted_index.As | 109 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.an | 13, 183 |
| abstract_inverted_index.by | 179 |
| abstract_inverted_index.in | 55, 90, 157 |
| abstract_inverted_index.is | 12, 18, 69, 75, 94, 100, 117, 124, 140, 168, 177 |
| abstract_inverted_index.of | 25, 31, 82, 88, 107, 131, 137, 145, 173, 212 |
| abstract_inverted_index.on | 51, 151, 198 |
| abstract_inverted_index.to | 1, 77, 102, 127 |
| abstract_inverted_index.How | 0 |
| abstract_inverted_index.The | 135, 186 |
| abstract_inverted_index.and | 66, 71, 96, 119, 154, 182, 216 |
| abstract_inverted_index.are | 147 |
| abstract_inverted_index.can | 206 |
| abstract_inverted_index.few | 33 |
| abstract_inverted_index.for | 20, 160, 222 |
| abstract_inverted_index.the | 22, 26, 29, 52, 56, 60, 86, 91, 104, 120, 129, 132, 142, 155, 158, 171, 174, 193, 199, 203, 209, 219, 223 |
| abstract_inverted_index.from | 8, 164 |
| abstract_inverted_index.show | 189 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.this | 36, 97, 138 |
| abstract_inverted_index.used | 101 |
| abstract_inverted_index.with | 192 |
| abstract_inverted_index.Then, | 85 |
| abstract_inverted_index.atoms | 89, 146 |
| abstract_inverted_index.based | 50, 150, 197 |
| abstract_inverted_index.force | 7, 43, 65, 113, 163, 194, 215, 224 |
| abstract_inverted_index.group | 47, 105, 121, 143 |
| abstract_inverted_index.novel | 40 |
| abstract_inverted_index.paper | 37, 139 |
| abstract_inverted_index.prior | 53, 98, 152 |
| abstract_inverted_index.that, | 190 |
| abstract_inverted_index.using | 46 |
| abstract_inverted_index.which | 17 |
| abstract_inverted_index.atoms. | 108 |
| abstract_inverted_index.create | 78 |
| abstract_inverted_index.ensure | 128 |
| abstract_inverted_index.force. | 84 |
| abstract_inverted_index.method | 45, 176, 196, 205 |
| abstract_inverted_index.safety | 23 |
| abstract_inverted_index.sparse | 48, 80, 122 |
| abstract_inverted_index.between | 62 |
| abstract_inverted_index.context | 30 |
| abstract_inverted_index.enhance | 218 |
| abstract_inverted_index.further | 207 |
| abstract_inverted_index.greatly | 217 |
| abstract_inverted_index.improve | 208 |
| abstract_inverted_index.l1-norm | 201 |
| abstract_inverted_index.process | 159 |
| abstract_inverted_index.result, | 111 |
| abstract_inverted_index.results | 188 |
| abstract_inverted_index.unknown | 4, 213 |
| abstract_inverted_index.Finally, | 170 |
| abstract_inverted_index.Firstly, | 59 |
| abstract_inverted_index.accuracy | 130, 211 |
| abstract_inverted_index.compared | 191 |
| abstract_inverted_index.critical | 19 |
| abstract_inverted_index.designed | 76 |
| abstract_inverted_index.equation | 116 |
| abstract_inverted_index.external | 6, 42, 64, 83, 162, 214 |
| abstract_inverted_index.identify | 3 |
| abstract_inverted_index.measured | 9, 165 |
| abstract_inverted_index.problem, | 16 |
| abstract_inverted_index.problem. | 226 |
| abstract_inverted_index.proposed | 175, 204 |
| abstract_inverted_index.proposes | 38 |
| abstract_inverted_index.reduced. | 169 |
| abstract_inverted_index.results. | 134 |
| abstract_inverted_index.standard | 200 |
| abstract_inverted_index.assessing | 21 |
| abstract_inverted_index.available | 34 |
| abstract_inverted_index.condition | 24 |
| abstract_inverted_index.determine | 103 |
| abstract_inverted_index.governing | 115 |
| abstract_inverted_index.important | 14 |
| abstract_inverted_index.knowledge | 54, 99 |
| abstract_inverted_index.numerical | 180 |
| abstract_inverted_index.redundant | 57, 73, 92 |
| abstract_inverted_index.relevance | 87 |
| abstract_inverted_index.responses | 11, 68, 167 |
| abstract_inverted_index.revealed, | 95 |
| abstract_inverted_index.accurately | 2 |
| abstract_inverted_index.complexity | 156 |
| abstract_inverted_index.determined | 149 |
| abstract_inverted_index.dictionary | 74, 93 |
| abstract_inverted_index.efficiency | 221 |
| abstract_inverted_index.expression | 81 |
| abstract_inverted_index.identified | 133, 210 |
| abstract_inverted_index.introduced | 126 |
| abstract_inverted_index.knowledge, | 153 |
| abstract_inverted_index.reasonably | 125, 148 |
| abstract_inverted_index.structural | 10 |
| abstract_inverted_index.structure. | 27, 185 |
| abstract_inverted_index.structures | 106, 144 |
| abstract_inverted_index.dictionary. | 58 |
| abstract_inverted_index.engineering | 15 |
| abstract_inverted_index.formulated, | 118 |
| abstract_inverted_index.identifying | 161 |
| abstract_inverted_index.illustrated | 187 |
| abstract_inverted_index.simulations | 181 |
| abstract_inverted_index.acceleration | 67, 166 |
| abstract_inverted_index.contribution | 136 |
| abstract_inverted_index.demonstrated | 178 |
| abstract_inverted_index.established, | 70 |
| abstract_inverted_index.experimental | 184 |
| abstract_inverted_index.relationship | 61 |
| abstract_inverted_index.time-varying | 5, 41, 63 |
| abstract_inverted_index.computational | 220 |
| abstract_inverted_index.effectiveness | 172 |
| abstract_inverted_index.identification | 44, 114, 195, 225 |
| abstract_inverted_index.regularization | 49, 123 |
| abstract_inverted_index.accelerometers, | 35 |
| abstract_inverted_index.regularization, | 202 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5104388153 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I2799850029 |
| citation_normalized_percentile.value | 0.51985544 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |