Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.17180
How can balance be quantified in game settings? This question is crucial for game designers, especially in player-versus-player (PvP) games, where analyzing the strength relations among predefined team compositions-such as hero combinations in multiplayer online battle arena (MOBA) games or decks in card games-is essential for enhancing gameplay and achieving balance. We have developed two advanced measures that extend beyond the simplistic win rate to quantify balance in zero-sum competitive scenarios. These measures are derived from win value estimations, which employ strength rating approximations via the Bradley-Terry model and counter relationship approximations via vector quantization, significantly reducing the computational complexity associated with traditional win value estimations. Throughout the learning process of these models, we identify useful categories of compositions and pinpoint their counter relationships, aligning with the experiences of human players without requiring specific game knowledge. Our methodology hinges on a simple technique to enhance codebook utilization in discrete representation with a deterministic vector quantization process for an extremely small state space. Our framework has been validated in popular online games, including Age of Empires II, Hearthstone, Brawl Stars, and League of Legends. The accuracy of the observed strength relations in these games is comparable to traditional pairwise win value predictions, while also offering a more manageable complexity for analysis. Ultimately, our findings contribute to a deeper understanding of PvP game dynamics and present a methodology that significantly improves game balance evaluation and design.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.17180
- https://arxiv.org/pdf/2408.17180
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402951764
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402951764Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.17180Digital Object Identifier
- Title
-
Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-30Full publication date if available
- Authors
-
Chiu-Chou Lin, Yu-Wei Shih, Kuei-Ting Kuo, Yu‐Cheng Chen, Chien-Hua Chen, Wei-Chen Chiu, I‐Chen WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.17180Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.17180Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.17180Direct OA link when available
- Concepts
-
Balance (ability), Cluster analysis, Computer science, Psychology, Mathematics, Statistics, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402951764 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.17180 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.17180 |
| ids.openalex | https://openalex.org/W4402951764 |
| fwci | |
| type | preprint |
| title | Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11574 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9715999960899353 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Artificial Intelligence in Games |
| topics[1].id | https://openalex.org/T11674 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9603999853134155 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Sports Analytics and Performance |
| topics[2].id | https://openalex.org/T10456 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9434000253677368 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Multi-Agent Systems and Negotiation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C168031717 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7185899019241333 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1530280 |
| concepts[0].display_name | Balance (ability) |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6196789741516113 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3956526219844818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3426344692707062 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3099222779273987 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3045567274093628 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C169760540 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[6].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/balance |
| keywords[0].score | 0.7185899019241333 |
| keywords[0].display_name | Balance (ability) |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.6196789741516113 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3956526219844818 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.3426344692707062 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.3099222779273987 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.3045567274093628 |
| keywords[5].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.17180 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.17180 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.17180 |
| locations[1].id | doi:10.48550/arxiv.2408.17180 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.17180 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113983132 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chiu-Chou Lin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lin, Chiu-Chou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5111345600 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yu-Wei Shih |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shih, Yu-Wei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113407673 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kuei-Ting Kuo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kuo, Kuei-Ting |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100773467 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0008-5601 |
| authorships[3].author.display_name | Yu‐Cheng Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Yu-Cheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5108335352 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Chien-Hua Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Chien-Hua |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5038549076 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7715-8306 |
| authorships[5].author.display_name | Wei-Chen Chiu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chiu, Wei-Chen |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5016730899 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2535-0587 |
| authorships[6].author.display_name | I‐Chen Wu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wu, I-Chen |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.17180 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-09-29T00:00:00 |
| display_name | Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11574 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9715999960899353 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Artificial Intelligence in Games |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.17180 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.17180 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.17180 |
| primary_location.id | pmh:oai:arXiv.org:2408.17180 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.17180 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.17180 |
| publication_date | 2024-08-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 140, 151, 204, 215, 224 |
| abstract_inverted_index.We | 51 |
| abstract_inverted_index.an | 157 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.be | 3 |
| abstract_inverted_index.in | 5, 16, 32, 41, 67, 147, 167, 190 |
| abstract_inverted_index.is | 10, 193 |
| abstract_inverted_index.of | 110, 117, 128, 173, 181, 185, 218 |
| abstract_inverted_index.on | 139 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.to | 64, 143, 195, 214 |
| abstract_inverted_index.we | 113 |
| abstract_inverted_index.Age | 172 |
| abstract_inverted_index.How | 0 |
| abstract_inverted_index.II, | 175 |
| abstract_inverted_index.Our | 136, 162 |
| abstract_inverted_index.PvP | 219 |
| abstract_inverted_index.The | 183 |
| abstract_inverted_index.and | 48, 88, 119, 179, 222, 232 |
| abstract_inverted_index.are | 73 |
| abstract_inverted_index.can | 1 |
| abstract_inverted_index.for | 12, 45, 156, 208 |
| abstract_inverted_index.has | 164 |
| abstract_inverted_index.our | 211 |
| abstract_inverted_index.the | 22, 60, 85, 97, 107, 126, 186 |
| abstract_inverted_index.two | 54 |
| abstract_inverted_index.via | 84, 92 |
| abstract_inverted_index.win | 62, 76, 103, 198 |
| abstract_inverted_index.This | 8 |
| abstract_inverted_index.also | 202 |
| abstract_inverted_index.been | 165 |
| abstract_inverted_index.card | 42 |
| abstract_inverted_index.from | 75 |
| abstract_inverted_index.game | 6, 13, 134, 220, 229 |
| abstract_inverted_index.have | 52 |
| abstract_inverted_index.hero | 30 |
| abstract_inverted_index.more | 205 |
| abstract_inverted_index.rate | 63 |
| abstract_inverted_index.team | 27 |
| abstract_inverted_index.that | 57, 226 |
| abstract_inverted_index.with | 101, 125, 150 |
| abstract_inverted_index.(PvP) | 18 |
| abstract_inverted_index.Brawl | 177 |
| abstract_inverted_index.These | 71 |
| abstract_inverted_index.among | 25 |
| abstract_inverted_index.arena | 36 |
| abstract_inverted_index.decks | 40 |
| abstract_inverted_index.games | 38, 192 |
| abstract_inverted_index.human | 129 |
| abstract_inverted_index.model | 87 |
| abstract_inverted_index.small | 159 |
| abstract_inverted_index.state | 160 |
| abstract_inverted_index.their | 121 |
| abstract_inverted_index.these | 111, 191 |
| abstract_inverted_index.value | 77, 104, 199 |
| abstract_inverted_index.where | 20 |
| abstract_inverted_index.which | 79 |
| abstract_inverted_index.while | 201 |
| abstract_inverted_index.(MOBA) | 37 |
| abstract_inverted_index.League | 180 |
| abstract_inverted_index.Stars, | 178 |
| abstract_inverted_index.battle | 35 |
| abstract_inverted_index.beyond | 59 |
| abstract_inverted_index.deeper | 216 |
| abstract_inverted_index.employ | 80 |
| abstract_inverted_index.extend | 58 |
| abstract_inverted_index.games, | 19, 170 |
| abstract_inverted_index.hinges | 138 |
| abstract_inverted_index.online | 34, 169 |
| abstract_inverted_index.rating | 82 |
| abstract_inverted_index.simple | 141 |
| abstract_inverted_index.space. | 161 |
| abstract_inverted_index.useful | 115 |
| abstract_inverted_index.vector | 93, 153 |
| abstract_inverted_index.Empires | 174 |
| abstract_inverted_index.balance | 2, 66, 230 |
| abstract_inverted_index.counter | 89, 122 |
| abstract_inverted_index.crucial | 11 |
| abstract_inverted_index.derived | 74 |
| abstract_inverted_index.design. | 233 |
| abstract_inverted_index.enhance | 144 |
| abstract_inverted_index.models, | 112 |
| abstract_inverted_index.players | 130 |
| abstract_inverted_index.popular | 168 |
| abstract_inverted_index.present | 223 |
| abstract_inverted_index.process | 109, 155 |
| abstract_inverted_index.without | 131 |
| abstract_inverted_index.Legends. | 182 |
| abstract_inverted_index.accuracy | 184 |
| abstract_inverted_index.advanced | 55 |
| abstract_inverted_index.aligning | 124 |
| abstract_inverted_index.balance. | 50 |
| abstract_inverted_index.codebook | 145 |
| abstract_inverted_index.discrete | 148 |
| abstract_inverted_index.dynamics | 221 |
| abstract_inverted_index.findings | 212 |
| abstract_inverted_index.gameplay | 47 |
| abstract_inverted_index.games-is | 43 |
| abstract_inverted_index.identify | 114 |
| abstract_inverted_index.improves | 228 |
| abstract_inverted_index.learning | 108 |
| abstract_inverted_index.measures | 56, 72 |
| abstract_inverted_index.observed | 187 |
| abstract_inverted_index.offering | 203 |
| abstract_inverted_index.pairwise | 197 |
| abstract_inverted_index.pinpoint | 120 |
| abstract_inverted_index.quantify | 65 |
| abstract_inverted_index.question | 9 |
| abstract_inverted_index.reducing | 96 |
| abstract_inverted_index.specific | 133 |
| abstract_inverted_index.strength | 23, 81, 188 |
| abstract_inverted_index.zero-sum | 68 |
| abstract_inverted_index.achieving | 49 |
| abstract_inverted_index.analysis. | 209 |
| abstract_inverted_index.analyzing | 21 |
| abstract_inverted_index.developed | 53 |
| abstract_inverted_index.enhancing | 46 |
| abstract_inverted_index.essential | 44 |
| abstract_inverted_index.extremely | 158 |
| abstract_inverted_index.framework | 163 |
| abstract_inverted_index.including | 171 |
| abstract_inverted_index.relations | 24, 189 |
| abstract_inverted_index.requiring | 132 |
| abstract_inverted_index.settings? | 7 |
| abstract_inverted_index.technique | 142 |
| abstract_inverted_index.validated | 166 |
| abstract_inverted_index.Throughout | 106 |
| abstract_inverted_index.associated | 100 |
| abstract_inverted_index.categories | 116 |
| abstract_inverted_index.comparable | 194 |
| abstract_inverted_index.complexity | 99, 207 |
| abstract_inverted_index.contribute | 213 |
| abstract_inverted_index.designers, | 14 |
| abstract_inverted_index.especially | 15 |
| abstract_inverted_index.evaluation | 231 |
| abstract_inverted_index.knowledge. | 135 |
| abstract_inverted_index.manageable | 206 |
| abstract_inverted_index.predefined | 26 |
| abstract_inverted_index.quantified | 4 |
| abstract_inverted_index.scenarios. | 70 |
| abstract_inverted_index.simplistic | 61 |
| abstract_inverted_index.Ultimately, | 210 |
| abstract_inverted_index.competitive | 69 |
| abstract_inverted_index.experiences | 127 |
| abstract_inverted_index.methodology | 137, 225 |
| abstract_inverted_index.multiplayer | 33 |
| abstract_inverted_index.traditional | 102, 196 |
| abstract_inverted_index.utilization | 146 |
| abstract_inverted_index.Hearthstone, | 176 |
| abstract_inverted_index.combinations | 31 |
| abstract_inverted_index.compositions | 118 |
| abstract_inverted_index.estimations, | 78 |
| abstract_inverted_index.estimations. | 105 |
| abstract_inverted_index.predictions, | 200 |
| abstract_inverted_index.quantization | 154 |
| abstract_inverted_index.relationship | 90 |
| abstract_inverted_index.Bradley-Terry | 86 |
| abstract_inverted_index.computational | 98 |
| abstract_inverted_index.deterministic | 152 |
| abstract_inverted_index.quantization, | 94 |
| abstract_inverted_index.significantly | 95, 227 |
| abstract_inverted_index.understanding | 217 |
| abstract_inverted_index.approximations | 83, 91 |
| abstract_inverted_index.relationships, | 123 |
| abstract_inverted_index.representation | 149 |
| abstract_inverted_index.compositions-such | 28 |
| abstract_inverted_index.player-versus-player | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |