Identifying build orientation of 3D ‐printed materials using convolutional neural networks
Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1002/sam.11497
The advent of additive manufacturing (AM) processes brought with it intense research into various materials and manufacturing processes. At the same time, the need for validation of material properties, as well as study and forecasting of aging, has arisen. Modern imaging techniques, like X‐ray computed tomography (XCT), are a convenient vehicle for such studies; however, the large datasets they produce require novel analysis techniques to efficiently extract critical information. In this paper, we present our work on developing a 3D extension of the ResNet architecture to distinguish between two build orientations of tensile bars produced by AM. Using only information from XCT, our method achieves a 99.3% correct classification at a misidentification of 1%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/sam.11497
- OA Status
- green
- Cited By
- 1
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3118806877
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3118806877Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/sam.11497Digital Object Identifier
- Title
-
Identifying build orientation of
3D ‐printed materials using convolutional neural networksWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-07Full publication date if available
- Authors
-
J. Strube, Malachi Schram, Sabiha Rustam, Zachary C. Kennedy, Tamás VargaList of authors in order
- Landing page
-
https://doi.org/10.1002/sam.11497Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1834047Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Orientation (vector space), Residual neural network, Artificial neural network, Architecture, Artificial intelligence, Ultimate tensile strength, Extension (predicate logic), Pattern recognition (psychology), Machine learning, Materials science, Mathematics, Composite material, Geometry, Visual arts, Art, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3118806877 |
|---|---|
| doi | https://doi.org/10.1002/sam.11497 |
| ids.doi | https://doi.org/10.1002/sam.11497 |
| ids.mag | 3118806877 |
| ids.openalex | https://openalex.org/W3118806877 |
| fwci | 0.31286525 |
| type | article |
| title | Identifying build orientation of |
| awards[0].id | https://openalex.org/G8310597984 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | DGE‐1633216 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | 6 |
| biblio.volume | 14 |
| biblio.last_page | 582 |
| biblio.first_page | 575 |
| topics[0].id | https://openalex.org/T11211 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1907 |
| topics[0].subfield.display_name | Geology |
| topics[0].display_name | 3D Surveying and Cultural Heritage |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T14339 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Processing and 3D Reconstruction |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list.value | 3760 |
| apc_list.currency | USD |
| apc_list.value_usd | 3760 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7886391282081604 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.626570999622345 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C16345878 |
| concepts[2].level | 2 |
| concepts[2].score | 0.612994909286499 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q107472979 |
| concepts[2].display_name | Orientation (vector space) |
| concepts[3].id | https://openalex.org/C2944601119 |
| concepts[3].level | 3 |
| concepts[3].score | 0.587671160697937 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q43744058 |
| concepts[3].display_name | Residual neural network |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4875290095806122 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C123657996 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48526832461357117 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[5].display_name | Architecture |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46482232213020325 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C112950240 |
| concepts[7].level | 2 |
| concepts[7].score | 0.430797815322876 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q76005 |
| concepts[7].display_name | Ultimate tensile strength |
| concepts[8].id | https://openalex.org/C2778029271 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4161813259124756 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5421931 |
| concepts[8].display_name | Extension (predicate logic) |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3914918303489685 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3344126343727112 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C192562407 |
| concepts[11].level | 0 |
| concepts[11].score | 0.18101385235786438 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[11].display_name | Materials science |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0898505449295044 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C159985019 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07975968718528748 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[13].display_name | Composite material |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07322737574577332 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C153349607 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[15].display_name | Visual arts |
| concepts[16].id | https://openalex.org/C142362112 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[16].display_name | Art |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7886391282081604 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.626570999622345 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/orientation |
| keywords[2].score | 0.612994909286499 |
| keywords[2].display_name | Orientation (vector space) |
| keywords[3].id | https://openalex.org/keywords/residual-neural-network |
| keywords[3].score | 0.587671160697937 |
| keywords[3].display_name | Residual neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.4875290095806122 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/architecture |
| keywords[5].score | 0.48526832461357117 |
| keywords[5].display_name | Architecture |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.46482232213020325 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/ultimate-tensile-strength |
| keywords[7].score | 0.430797815322876 |
| keywords[7].display_name | Ultimate tensile strength |
| keywords[8].id | https://openalex.org/keywords/extension |
| keywords[8].score | 0.4161813259124756 |
| keywords[8].display_name | Extension (predicate logic) |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.3914918303489685 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3344126343727112 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/materials-science |
| keywords[11].score | 0.18101385235786438 |
| keywords[11].display_name | Materials science |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.0898505449295044 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/composite-material |
| keywords[13].score | 0.07975968718528748 |
| keywords[13].display_name | Composite material |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.07322737574577332 |
| keywords[14].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1002/sam.11497 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S40788348 |
| locations[0].source.issn | 1932-1864, 1932-1872 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1932-1864 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Statistical Analysis and Data Mining The ASA Data Science Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Statistical Analysis and Data Mining: The ASA Data Science Journal |
| locations[0].landing_page_url | https://doi.org/10.1002/sam.11497 |
| locations[1].id | pmh:oai:osti.gov:1834047 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1834047 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058626636 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7470-9301 |
| authorships[0].author.display_name | J. Strube |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[0].affiliations[0].raw_affiliation_string | Advanced Computations, Math and Data Division, Pacific Northwest National Laboratory, Richland, Washington, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I181233156 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA |
| authorships[0].institutions[0].id | https://openalex.org/I142606810 |
| authorships[0].institutions[0].ror | https://ror.org/05h992307 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[0].institutions[1].id | https://openalex.org/I181233156 |
| authorships[0].institutions[1].ror | https://ror.org/0293rh119 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I181233156 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Oregon |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jan Strube |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Advanced Computations, Math and Data Division, Pacific Northwest National Laboratory, Richland, Washington, USA, Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA |
| authorships[1].author.id | https://openalex.org/A5002582478 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3475-2871 |
| authorships[1].author.display_name | Malachi Schram |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[1].affiliations[0].raw_affiliation_string | Advanced Computations, Math and Data Division, Pacific Northwest National Laboratory, Richland, Washington, USA |
| authorships[1].institutions[0].id | https://openalex.org/I142606810 |
| authorships[1].institutions[0].ror | https://ror.org/05h992307 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Malachi Schram |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Advanced Computations, Math and Data Division, Pacific Northwest National Laboratory, Richland, Washington, USA |
| authorships[2].author.id | https://openalex.org/A5066944126 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2424-8153 |
| authorships[2].author.display_name | Sabiha Rustam |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, University of Washington, Seattle, Washington, USA |
| authorships[2].institutions[0].id | https://openalex.org/I201448701 |
| authorships[2].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Washington |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sabiha Rustam |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Chemical Engineering, University of Washington, Seattle, Washington, USA |
| authorships[3].author.id | https://openalex.org/A5053480689 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2479-8232 |
| authorships[3].author.display_name | Zachary C. Kennedy |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[3].affiliations[0].raw_affiliation_string | Signature Science and Technology Division, Pacific Northwest National Laboratory, Richland, Washington, USA |
| authorships[3].institutions[0].id | https://openalex.org/I142606810 |
| authorships[3].institutions[0].ror | https://ror.org/05h992307 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zachary Kennedy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Signature Science and Technology Division, Pacific Northwest National Laboratory, Richland, Washington, USA |
| authorships[4].author.id | https://openalex.org/A5074093480 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5492-866X |
| authorships[4].author.display_name | Tamás Varga |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I142606810, https://openalex.org/I2801280572 |
| authorships[4].affiliations[0].raw_affiliation_string | Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA |
| authorships[4].institutions[0].id | https://openalex.org/I2801280572 |
| authorships[4].institutions[0].ror | https://ror.org/04rc0xn13 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I2801280572, https://openalex.org/I39565521 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Environmental Molecular Sciences Laboratory |
| authorships[4].institutions[1].id | https://openalex.org/I142606810 |
| authorships[4].institutions[1].ror | https://ror.org/05h992307 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Pacific Northwest National Laboratory |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Tamas Varga |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1834047 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-01-18T00:00:00 |
| display_name | Identifying build orientation of |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11211 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1907 |
| primary_topic.subfield.display_name | Geology |
| primary_topic.display_name | 3D Surveying and Cultural Heritage |
| related_works | https://openalex.org/W2599472179, https://openalex.org/W2075768550, https://openalex.org/W3022218857, https://openalex.org/W2369178846, https://openalex.org/W3213976941, https://openalex.org/W4382564271, https://openalex.org/W2604192360, https://openalex.org/W2958985755, https://openalex.org/W2889221269, https://openalex.org/W4360783045 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:1834047 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1834047 |
| primary_location.id | doi:10.1002/sam.11497 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S40788348 |
| primary_location.source.issn | 1932-1864, 1932-1872 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1932-1864 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Statistical Analysis and Data Mining The ASA Data Science Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Statistical Analysis and Data Mining: The ASA Data Science Journal |
| primary_location.landing_page_url | https://doi.org/10.1002/sam.11497 |
| publication_date | 2021-01-07 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2915854813, https://openalex.org/W3047477895, https://openalex.org/W2771464129, https://openalex.org/W2736498808, https://openalex.org/W2194775991, https://openalex.org/W2112796928, https://openalex.org/W2211722331, https://openalex.org/W6675354045, https://openalex.org/W2611819392, https://openalex.org/W2089032712, https://openalex.org/W1522301498, https://openalex.org/W2807007689, https://openalex.org/W2101234009 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 49, 79, 106, 111 |
| abstract_inverted_index.3D | 80 |
| abstract_inverted_index.At | 19 |
| abstract_inverted_index.In | 70 |
| abstract_inverted_index.as | 30, 32 |
| abstract_inverted_index.at | 110 |
| abstract_inverted_index.by | 96 |
| abstract_inverted_index.it | 10 |
| abstract_inverted_index.of | 3, 27, 36, 82, 92, 113 |
| abstract_inverted_index.on | 77 |
| abstract_inverted_index.to | 65, 86 |
| abstract_inverted_index.we | 73 |
| abstract_inverted_index.1%. | 114 |
| abstract_inverted_index.AM. | 97 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 16, 34 |
| abstract_inverted_index.are | 48 |
| abstract_inverted_index.for | 25, 52 |
| abstract_inverted_index.has | 38 |
| abstract_inverted_index.our | 75, 103 |
| abstract_inverted_index.the | 20, 23, 56, 83 |
| abstract_inverted_index.two | 89 |
| abstract_inverted_index.(AM) | 6 |
| abstract_inverted_index.XCT, | 102 |
| abstract_inverted_index.bars | 94 |
| abstract_inverted_index.from | 101 |
| abstract_inverted_index.into | 13 |
| abstract_inverted_index.like | 43 |
| abstract_inverted_index.need | 24 |
| abstract_inverted_index.only | 99 |
| abstract_inverted_index.same | 21 |
| abstract_inverted_index.such | 53 |
| abstract_inverted_index.they | 59 |
| abstract_inverted_index.this | 71 |
| abstract_inverted_index.well | 31 |
| abstract_inverted_index.with | 9 |
| abstract_inverted_index.work | 76 |
| abstract_inverted_index.99.3% | 107 |
| abstract_inverted_index.Using | 98 |
| abstract_inverted_index.build | 90 |
| abstract_inverted_index.large | 57 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.study | 33 |
| abstract_inverted_index.time, | 22 |
| abstract_inverted_index.(XCT), | 47 |
| abstract_inverted_index.Modern | 40 |
| abstract_inverted_index.ResNet | 84 |
| abstract_inverted_index.advent | 2 |
| abstract_inverted_index.aging, | 37 |
| abstract_inverted_index.method | 104 |
| abstract_inverted_index.paper, | 72 |
| abstract_inverted_index.X‐ray | 44 |
| abstract_inverted_index.arisen. | 39 |
| abstract_inverted_index.between | 88 |
| abstract_inverted_index.brought | 8 |
| abstract_inverted_index.correct | 108 |
| abstract_inverted_index.extract | 67 |
| abstract_inverted_index.imaging | 41 |
| abstract_inverted_index.intense | 11 |
| abstract_inverted_index.present | 74 |
| abstract_inverted_index.produce | 60 |
| abstract_inverted_index.require | 61 |
| abstract_inverted_index.tensile | 93 |
| abstract_inverted_index.various | 14 |
| abstract_inverted_index.vehicle | 51 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.achieves | 105 |
| abstract_inverted_index.additive | 4 |
| abstract_inverted_index.analysis | 63 |
| abstract_inverted_index.computed | 45 |
| abstract_inverted_index.critical | 68 |
| abstract_inverted_index.datasets | 58 |
| abstract_inverted_index.however, | 55 |
| abstract_inverted_index.material | 28 |
| abstract_inverted_index.produced | 95 |
| abstract_inverted_index.research | 12 |
| abstract_inverted_index.studies; | 54 |
| abstract_inverted_index.extension | 81 |
| abstract_inverted_index.materials | 15 |
| abstract_inverted_index.processes | 7 |
| abstract_inverted_index.convenient | 50 |
| abstract_inverted_index.developing | 78 |
| abstract_inverted_index.processes. | 18 |
| abstract_inverted_index.techniques | 64 |
| abstract_inverted_index.tomography | 46 |
| abstract_inverted_index.validation | 26 |
| abstract_inverted_index.distinguish | 87 |
| abstract_inverted_index.efficiently | 66 |
| abstract_inverted_index.forecasting | 35 |
| abstract_inverted_index.information | 100 |
| abstract_inverted_index.properties, | 29 |
| abstract_inverted_index.techniques, | 42 |
| abstract_inverted_index.architecture | 85 |
| abstract_inverted_index.information. | 69 |
| abstract_inverted_index.orientations | 91 |
| abstract_inverted_index.manufacturing | 5, 17 |
| abstract_inverted_index.classification | 109 |
| abstract_inverted_index.misidentification | 112 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5058626636 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I142606810, https://openalex.org/I181233156 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.59872503 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |