Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADS Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1523/jneurosci.1224-23.2024
Many initial movements require subsequent corrective movements, but how the motor cortex transitions to make corrections and how similar the encoding is to initial movements is unclear. In our study, we explored how the brain's motor cortex signals both initial and corrective movements during a precision reaching task. We recorded a large population of neurons from two male rhesus macaques across multiple sessions to examine the neural firing rates during not only initial movements but also subsequent corrective movements. AutoLFADS, an autoencoder-based deep-learning model, was applied to provide a clearer picture of neurons’ activity on individual corrective movements across sessions. Decoding of reach velocity generalized poorly from initial to corrective submovements. Unlike initial movements, it was challenging to predict the velocity of corrective movements using traditional linear methods in a single, global neural space. We identified several locations in the neural space where corrective submovements originated after the initial reaches, signifying firing rates different than the baseline before initial movements. To improve corrective movement decoding, we demonstrate that a state-dependent decoder incorporating the population firing rates at the initiation of correction improved performance, highlighting the diverse neural features of corrective movements. In summary, we show neural differences between initial and corrective submovements and how the neural activity encodes specific combinations of velocity and position. These findings are inconsistent with assumptions that neural correlations with kinematic features are global and independent, emphasizing that traditional methods often fall short in describing these diverse neural processes for online corrective movements.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1523/jneurosci.1224-23.2024
- OA Status
- green
- Cited By
- 4
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393235483
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393235483Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1523/jneurosci.1224-23.2024Digital Object Identifier
- Title
-
Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-27Full publication date if available
- Authors
-
Wei-Hsien Lee, Brianna M. Karpowicz, Chethan Pandarinath, Adam G. RouseList of authors in order
- Landing page
-
https://doi.org/10.1523/jneurosci.1224-23.2024Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11097258Direct OA link when available
- Concepts
-
Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393235483 |
|---|---|
| doi | https://doi.org/10.1523/jneurosci.1224-23.2024 |
| ids.doi | https://doi.org/10.1523/jneurosci.1224-23.2024 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38538142 |
| ids.openalex | https://openalex.org/W4393235483 |
| fwci | 2.81120225 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000818 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Animals |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008297 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Male |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008253 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Macaca mulatta |
| mesh[3].qualifier_ui | Q000502 |
| mesh[3].descriptor_ui | D011597 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | physiology |
| mesh[3].descriptor_name | Psychomotor Performance |
| mesh[4].qualifier_ui | Q000502 |
| mesh[4].descriptor_ui | D009044 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | physiology |
| mesh[4].descriptor_name | Motor Cortex |
| mesh[5].qualifier_ui | Q000502 |
| mesh[5].descriptor_ui | D009474 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | physiology |
| mesh[5].descriptor_name | Neurons |
| mesh[6].qualifier_ui | Q000502 |
| mesh[6].descriptor_ui | D009068 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | physiology |
| mesh[6].descriptor_name | Movement |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000077321 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Deep Learning |
| mesh[8].qualifier_ui | Q000502 |
| mesh[8].descriptor_ui | D000200 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | physiology |
| mesh[8].descriptor_name | Action Potentials |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000818 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Animals |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008297 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Male |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008253 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Macaca mulatta |
| mesh[12].qualifier_ui | Q000502 |
| mesh[12].descriptor_ui | D011597 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | physiology |
| mesh[12].descriptor_name | Psychomotor Performance |
| mesh[13].qualifier_ui | Q000502 |
| mesh[13].descriptor_ui | D009044 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | physiology |
| mesh[13].descriptor_name | Motor Cortex |
| mesh[14].qualifier_ui | Q000502 |
| mesh[14].descriptor_ui | D009474 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | physiology |
| mesh[14].descriptor_name | Neurons |
| mesh[15].qualifier_ui | Q000502 |
| mesh[15].descriptor_ui | D009068 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | physiology |
| mesh[15].descriptor_name | Movement |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000077321 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Deep Learning |
| mesh[17].qualifier_ui | Q000502 |
| mesh[17].descriptor_ui | D000200 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | physiology |
| mesh[17].descriptor_name | Action Potentials |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000818 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Animals |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D008297 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Male |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D008253 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Macaca mulatta |
| mesh[21].qualifier_ui | Q000502 |
| mesh[21].descriptor_ui | D011597 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | physiology |
| mesh[21].descriptor_name | Psychomotor Performance |
| mesh[22].qualifier_ui | Q000502 |
| mesh[22].descriptor_ui | D009044 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | physiology |
| mesh[22].descriptor_name | Motor Cortex |
| mesh[23].qualifier_ui | Q000502 |
| mesh[23].descriptor_ui | D009474 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | physiology |
| mesh[23].descriptor_name | Neurons |
| mesh[24].qualifier_ui | Q000502 |
| mesh[24].descriptor_ui | D009068 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | physiology |
| mesh[24].descriptor_name | Movement |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000077321 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Deep Learning |
| mesh[26].qualifier_ui | Q000502 |
| mesh[26].descriptor_ui | D000200 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | physiology |
| mesh[26].descriptor_name | Action Potentials |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000818 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Animals |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D008297 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Male |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D008253 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Macaca mulatta |
| mesh[30].qualifier_ui | Q000502 |
| mesh[30].descriptor_ui | D011597 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | physiology |
| mesh[30].descriptor_name | Psychomotor Performance |
| mesh[31].qualifier_ui | Q000502 |
| mesh[31].descriptor_ui | D009044 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | physiology |
| mesh[31].descriptor_name | Motor Cortex |
| mesh[32].qualifier_ui | Q000502 |
| mesh[32].descriptor_ui | D009474 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | physiology |
| mesh[32].descriptor_name | Neurons |
| mesh[33].qualifier_ui | Q000502 |
| mesh[33].descriptor_ui | D009068 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | physiology |
| mesh[33].descriptor_name | Movement |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000077321 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Deep Learning |
| mesh[35].qualifier_ui | Q000502 |
| mesh[35].descriptor_ui | D000200 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | physiology |
| mesh[35].descriptor_name | Action Potentials |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D000818 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Animals |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D008297 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Male |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D008253 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Macaca mulatta |
| mesh[39].qualifier_ui | Q000502 |
| mesh[39].descriptor_ui | D011597 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | physiology |
| mesh[39].descriptor_name | Psychomotor Performance |
| mesh[40].qualifier_ui | Q000502 |
| mesh[40].descriptor_ui | D009044 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | physiology |
| mesh[40].descriptor_name | Motor Cortex |
| mesh[41].qualifier_ui | Q000502 |
| mesh[41].descriptor_ui | D009474 |
| mesh[41].is_major_topic | True |
| mesh[41].qualifier_name | physiology |
| mesh[41].descriptor_name | Neurons |
| mesh[42].qualifier_ui | Q000502 |
| mesh[42].descriptor_ui | D009068 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | physiology |
| mesh[42].descriptor_name | Movement |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D000077321 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Deep Learning |
| mesh[44].qualifier_ui | Q000502 |
| mesh[44].descriptor_ui | D000200 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | physiology |
| mesh[44].descriptor_name | Action Potentials |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D000818 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Animals |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D008297 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Male |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D008253 |
| mesh[47].is_major_topic | True |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Macaca mulatta |
| mesh[48].qualifier_ui | Q000502 |
| mesh[48].descriptor_ui | D011597 |
| mesh[48].is_major_topic | True |
| mesh[48].qualifier_name | physiology |
| mesh[48].descriptor_name | Psychomotor Performance |
| mesh[49].qualifier_ui | Q000502 |
| mesh[49].descriptor_ui | D009044 |
| mesh[49].is_major_topic | True |
| mesh[49].qualifier_name | physiology |
| mesh[49].descriptor_name | Motor Cortex |
| type | article |
| title | Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADS |
| awards[0].id | https://openalex.org/G1006669310 |
| awards[0].funder_id | https://openalex.org/F4320337359 |
| awards[0].display_name | |
| awards[0].funder_award_id | R00NS101127 |
| awards[0].funder_display_name | National Institute of Neurological Disorders and Stroke |
| awards[1].id | https://openalex.org/G2386307202 |
| awards[1].funder_id | https://openalex.org/F4320332180 |
| awards[1].display_name | |
| awards[1].funder_award_id | PA-18-02-04-INI-FP-021 |
| awards[1].funder_display_name | Defense Advanced Research Projects Agency |
| biblio.issue | 20 |
| biblio.volume | 44 |
| biblio.last_page | e1224232024 |
| biblio.first_page | e1224232024 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10820 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9886000156402588 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Fuzzy Logic and Control Systems |
| topics[2].id | https://openalex.org/T10784 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9797000288963318 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Muscle activation and electromyography studies |
| funders[0].id | https://openalex.org/F4320332180 |
| funders[0].ror | https://ror.org/02caytj08 |
| funders[0].display_name | Defense Advanced Research Projects Agency |
| funders[1].id | https://openalex.org/F4320337359 |
| funders[1].ror | https://ror.org/01s5ya894 |
| funders[1].display_name | National Institute of Neurological Disorders and Stroke |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.46141088008880615 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3919588029384613 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.46141088008880615 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.3919588029384613 |
| keywords[1].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1523/jneurosci.1224-23.2024 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S5555990 |
| locations[0].source.issn | 0270-6474, 1529-2401 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0270-6474 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310319739 |
| locations[0].source.host_organization_name | Society for Neuroscience |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319739 |
| locations[0].source.host_organization_lineage_names | Society for Neuroscience |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Journal of Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.1523/jneurosci.1224-23.2024 |
| locations[1].id | pmid:38538142 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | The Journal of neuroscience : the official journal of the Society for Neuroscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38538142 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11097258 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Neurosci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11097258 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5019641434 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-2110-1102 |
| authorships[0].author.display_name | Wei-Hsien Lee |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I146416000 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Kansas |
| authorships[0].institutions[0].id | https://openalex.org/I146416000 |
| authorships[0].institutions[0].ror | https://ror.org/001tmjg57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I146416000 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Kansas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei-Hsien Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Kansas |
| authorships[1].author.id | https://openalex.org/A5018617926 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6519-4641 |
| authorships[1].author.display_name | Brianna M. Karpowicz |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130701444, https://openalex.org/I2802612298 |
| authorships[1].affiliations[0].raw_affiliation_string | Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I130701444 |
| authorships[1].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Georgia Institute of Technology |
| authorships[1].institutions[1].id | https://openalex.org/I2802612298 |
| authorships[1].institutions[1].ror | https://ror.org/02j15s898 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I130701444, https://openalex.org/I150468666, https://openalex.org/I2802612298 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | The Wallace H. Coulter Department of Biomedical Engineering |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Brianna M. Karpowicz |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5065776938 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1241-1432 |
| authorships[2].author.display_name | Chethan Pandarinath |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I130701444, https://openalex.org/I2802612298 |
| authorships[2].affiliations[0].raw_affiliation_string | Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I150468666 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Neurosurgery, Emory University |
| authorships[2].institutions[0].id | https://openalex.org/I150468666 |
| authorships[2].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Emory University |
| authorships[2].institutions[1].id | https://openalex.org/I130701444 |
| authorships[2].institutions[1].ror | https://ror.org/01zkghx44 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I130701444 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Georgia Institute of Technology |
| authorships[2].institutions[2].id | https://openalex.org/I2802612298 |
| authorships[2].institutions[2].ror | https://ror.org/02j15s898 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I130701444, https://openalex.org/I150468666, https://openalex.org/I2802612298 |
| authorships[2].institutions[2].country_code | US |
| authorships[2].institutions[2].display_name | The Wallace H. Coulter Department of Biomedical Engineering |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chethan Pandarinath |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Neurosurgery, Emory University, Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5049259807 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3785-1442 |
| authorships[3].author.display_name | Adam G. Rouse |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210128618 |
| authorships[3].affiliations[0].raw_affiliation_string | Neurosurgery Department, University of Kansas Medical Center |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210128618 |
| authorships[3].affiliations[1].raw_affiliation_string | Cell Biology and Physiology Department, University of Kansas Medical Center |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I146416000 |
| authorships[3].affiliations[2].raw_affiliation_string | University of Kansas |
| authorships[3].affiliations[3].institution_ids | https://openalex.org/I146416000 |
| authorships[3].affiliations[3].raw_affiliation_string | Electrical Engineering and Computer Science Department, University of Kansas |
| authorships[3].institutions[0].id | https://openalex.org/I146416000 |
| authorships[3].institutions[0].ror | https://ror.org/001tmjg57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I146416000 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Kansas |
| authorships[3].institutions[1].id | https://openalex.org/I4210128618 |
| authorships[3].institutions[1].ror | https://ror.org/036c9yv20 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210128618 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of Kansas Medical Center |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Adam G. Rouse |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Cell Biology and Physiology Department, University of Kansas Medical Center, Electrical Engineering and Computer Science Department, University of Kansas, Neurosurgery Department, University of Kansas Medical Center, University of Kansas |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11097258 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADS |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11097258 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Neurosci |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11097258 |
| primary_location.id | doi:10.1523/jneurosci.1224-23.2024 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S5555990 |
| primary_location.source.issn | 0270-6474, 1529-2401 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0270-6474 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310319739 |
| primary_location.source.host_organization_name | Society for Neuroscience |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319739 |
| primary_location.source.host_organization_lineage_names | Society for Neuroscience |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Journal of Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.1523/jneurosci.1224-23.2024 |
| publication_date | 2024-03-27 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2149235726, https://openalex.org/W3005938108, https://openalex.org/W2104137141, https://openalex.org/W3016977963, https://openalex.org/W4366725409, https://openalex.org/W2047237271, https://openalex.org/W2410021629, https://openalex.org/W1976437290, https://openalex.org/W2028429148, https://openalex.org/W2166422604, https://openalex.org/W2059793588, https://openalex.org/W4224214225, https://openalex.org/W2500931054, https://openalex.org/W4310155594, https://openalex.org/W2337492206, https://openalex.org/W4293529103, https://openalex.org/W2009074363, https://openalex.org/W1273318020, https://openalex.org/W2976024218, https://openalex.org/W2951777958, https://openalex.org/W2898593582, https://openalex.org/W3201531713, https://openalex.org/W2167906274, https://openalex.org/W1965092590, https://openalex.org/W2047933600, https://openalex.org/W2963062788, https://openalex.org/W2530150752, https://openalex.org/W4226120519, https://openalex.org/W2296307970, https://openalex.org/W2236249311, https://openalex.org/W2037547604, https://openalex.org/W2129908972, https://openalex.org/W2023295798, https://openalex.org/W2015667795, https://openalex.org/W1978913152, https://openalex.org/W2538079766, https://openalex.org/W4253453051, https://openalex.org/W2146377664, https://openalex.org/W2048105701, https://openalex.org/W2542768043, https://openalex.org/W2006203574, https://openalex.org/W4309074622, https://openalex.org/W2105102432 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 44, 50, 88, 129, 168 |
| abstract_inverted_index.In | 27, 191 |
| abstract_inverted_index.To | 160 |
| abstract_inverted_index.We | 48, 134 |
| abstract_inverted_index.an | 80 |
| abstract_inverted_index.at | 176 |
| abstract_inverted_index.in | 128, 138, 237 |
| abstract_inverted_index.is | 21, 25 |
| abstract_inverted_index.it | 114 |
| abstract_inverted_index.of | 53, 91, 101, 121, 179, 188, 210 |
| abstract_inverted_index.on | 94 |
| abstract_inverted_index.to | 13, 22, 63, 86, 108, 117 |
| abstract_inverted_index.we | 30, 165, 193 |
| abstract_inverted_index.and | 16, 40, 199, 202, 212, 228 |
| abstract_inverted_index.are | 216, 226 |
| abstract_inverted_index.but | 7, 74 |
| abstract_inverted_index.for | 243 |
| abstract_inverted_index.how | 8, 17, 32, 203 |
| abstract_inverted_index.not | 70 |
| abstract_inverted_index.our | 28 |
| abstract_inverted_index.the | 9, 19, 33, 65, 119, 139, 147, 155, 172, 177, 184, 204 |
| abstract_inverted_index.two | 56 |
| abstract_inverted_index.was | 84, 115 |
| abstract_inverted_index.Many | 0 |
| abstract_inverted_index.also | 75 |
| abstract_inverted_index.both | 38 |
| abstract_inverted_index.fall | 235 |
| abstract_inverted_index.from | 55, 106 |
| abstract_inverted_index.make | 14 |
| abstract_inverted_index.male | 57 |
| abstract_inverted_index.only | 71 |
| abstract_inverted_index.show | 194 |
| abstract_inverted_index.than | 154 |
| abstract_inverted_index.that | 167, 220, 231 |
| abstract_inverted_index.with | 218, 223 |
| abstract_inverted_index.These | 214 |
| abstract_inverted_index.after | 146 |
| abstract_inverted_index.large | 51 |
| abstract_inverted_index.motor | 10, 35 |
| abstract_inverted_index.often | 234 |
| abstract_inverted_index.rates | 68, 152, 175 |
| abstract_inverted_index.reach | 102 |
| abstract_inverted_index.short | 236 |
| abstract_inverted_index.space | 141 |
| abstract_inverted_index.task. | 47 |
| abstract_inverted_index.these | 239 |
| abstract_inverted_index.using | 124 |
| abstract_inverted_index.where | 142 |
| abstract_inverted_index.Unlike | 111 |
| abstract_inverted_index.across | 60, 98 |
| abstract_inverted_index.before | 157 |
| abstract_inverted_index.cortex | 11, 36 |
| abstract_inverted_index.during | 43, 69 |
| abstract_inverted_index.firing | 67, 151, 174 |
| abstract_inverted_index.global | 131, 227 |
| abstract_inverted_index.linear | 126 |
| abstract_inverted_index.model, | 83 |
| abstract_inverted_index.neural | 66, 132, 140, 186, 195, 205, 221, 241 |
| abstract_inverted_index.online | 244 |
| abstract_inverted_index.poorly | 105 |
| abstract_inverted_index.rhesus | 58 |
| abstract_inverted_index.space. | 133 |
| abstract_inverted_index.study, | 29 |
| abstract_inverted_index.applied | 85 |
| abstract_inverted_index.between | 197 |
| abstract_inverted_index.brain's | 34 |
| abstract_inverted_index.clearer | 89 |
| abstract_inverted_index.decoder | 170 |
| abstract_inverted_index.diverse | 185, 240 |
| abstract_inverted_index.encodes | 207 |
| abstract_inverted_index.examine | 64 |
| abstract_inverted_index.improve | 161 |
| abstract_inverted_index.initial | 1, 23, 39, 72, 107, 112, 148, 158, 198 |
| abstract_inverted_index.methods | 127, 233 |
| abstract_inverted_index.neurons | 54 |
| abstract_inverted_index.picture | 90 |
| abstract_inverted_index.predict | 118 |
| abstract_inverted_index.provide | 87 |
| abstract_inverted_index.require | 3 |
| abstract_inverted_index.several | 136 |
| abstract_inverted_index.signals | 37 |
| abstract_inverted_index.similar | 18 |
| abstract_inverted_index.single, | 130 |
| abstract_inverted_index.Decoding | 100 |
| abstract_inverted_index.activity | 93, 206 |
| abstract_inverted_index.baseline | 156 |
| abstract_inverted_index.encoding | 20 |
| abstract_inverted_index.explored | 31 |
| abstract_inverted_index.features | 187, 225 |
| abstract_inverted_index.findings | 215 |
| abstract_inverted_index.improved | 181 |
| abstract_inverted_index.macaques | 59 |
| abstract_inverted_index.movement | 163 |
| abstract_inverted_index.multiple | 61 |
| abstract_inverted_index.reaches, | 149 |
| abstract_inverted_index.reaching | 46 |
| abstract_inverted_index.recorded | 49 |
| abstract_inverted_index.sessions | 62 |
| abstract_inverted_index.specific | 208 |
| abstract_inverted_index.summary, | 192 |
| abstract_inverted_index.unclear. | 26 |
| abstract_inverted_index.velocity | 103, 120, 211 |
| abstract_inverted_index.decoding, | 164 |
| abstract_inverted_index.different | 153 |
| abstract_inverted_index.kinematic | 224 |
| abstract_inverted_index.locations | 137 |
| abstract_inverted_index.movements | 2, 24, 42, 73, 97, 123 |
| abstract_inverted_index.position. | 213 |
| abstract_inverted_index.precision | 45 |
| abstract_inverted_index.processes | 242 |
| abstract_inverted_index.sessions. | 99 |
| abstract_inverted_index.AutoLFADS, | 79 |
| abstract_inverted_index.correction | 180 |
| abstract_inverted_index.corrective | 5, 41, 77, 96, 109, 122, 143, 162, 189, 200, 245 |
| abstract_inverted_index.describing | 238 |
| abstract_inverted_index.identified | 135 |
| abstract_inverted_index.individual | 95 |
| abstract_inverted_index.initiation | 178 |
| abstract_inverted_index.movements, | 6, 113 |
| abstract_inverted_index.movements. | 78, 159, 190, 246 |
| abstract_inverted_index.neurons’ | 92 |
| abstract_inverted_index.originated | 145 |
| abstract_inverted_index.population | 52, 173 |
| abstract_inverted_index.signifying | 150 |
| abstract_inverted_index.subsequent | 4, 76 |
| abstract_inverted_index.assumptions | 219 |
| abstract_inverted_index.challenging | 116 |
| abstract_inverted_index.corrections | 15 |
| abstract_inverted_index.demonstrate | 166 |
| abstract_inverted_index.differences | 196 |
| abstract_inverted_index.emphasizing | 230 |
| abstract_inverted_index.generalized | 104 |
| abstract_inverted_index.traditional | 125, 232 |
| abstract_inverted_index.transitions | 12 |
| abstract_inverted_index.combinations | 209 |
| abstract_inverted_index.correlations | 222 |
| abstract_inverted_index.highlighting | 183 |
| abstract_inverted_index.inconsistent | 217 |
| abstract_inverted_index.independent, | 229 |
| abstract_inverted_index.performance, | 182 |
| abstract_inverted_index.submovements | 144, 201 |
| abstract_inverted_index.deep-learning | 82 |
| abstract_inverted_index.incorporating | 171 |
| abstract_inverted_index.submovements. | 110 |
| abstract_inverted_index.state-dependent | 169 |
| abstract_inverted_index.autoencoder-based | 81 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.83439824 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |