Identifying Links Between Productivity and Biobehavioral Rhythms Modeled From Multimodal Sensor Streams: Exploratory Quantitative Study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2196/47194
Background Biobehavioral rhythms are biological, behavioral, and psychosocial processes with repeating cycles. Abnormal rhythms have been linked to various health issues, such as sleep disorders, obesity, and depression. Objective This study aims to identify links between productivity and biobehavioral rhythms modeled from passively collected mobile data streams. Methods In this study, we used a multimodal mobile sensing data set consisting of data collected from smartphones and Fitbits worn by 188 college students over a continuous period of 16 weeks. The participants reported their self-evaluated daily productivity score (ranging from 0 to 4) during weeks 1, 6, and 15. To analyze the data, we modeled cyclic human behavior patterns based on multimodal mobile sensing data gathered during weeks 1, 6, 15, and the adjacent weeks. Our methodology resulted in the creation of a rhythm model for each sensor feature. Additionally, we developed a correlation-based approach to identify connections between rhythm stability and high or low productivity levels. Results Differences exist in the biobehavioral rhythms of high- and low-productivity students, with those demonstrating greater rhythm stability also exhibiting higher productivity levels. Notably, a negative correlation (C=–0.16) was observed between productivity and the SE of the phase for the 24-hour period during week 1, with a higher SE indicative of lower rhythm stability. Conclusions Modeling biobehavioral rhythms has the potential to quantify and forecast productivity. The findings have implications for building novel cyber-human systems that align with human beings’ biobehavioral rhythms to improve health, well-being, and work performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2196/47194
- OA Status
- diamond
- Cited By
- 1
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391858735
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391858735Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2196/47194Digital Object Identifier
- Title
-
Identifying Links Between Productivity and Biobehavioral Rhythms Modeled From Multimodal Sensor Streams: Exploratory Quantitative StudyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-15Full publication date if available
- Authors
-
Runze Yan, Xinwen Liu, Janine M. Dutcher, Michael Tumminia, Daniella K. Villalba, Sheldon Cohen, J. David Creswell, Kasey G. Creswell, Jennifer Mankoff, Anind K. Dey, Afsaneh DoryabList of authors in order
- Landing page
-
https://doi.org/10.2196/47194Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2196/47194Direct OA link when available
- Concepts
-
Rhythm, STREAMS, Productivity, Computer science, Exploratory research, Psychology, Artificial intelligence, Neuroscience, Economics, Medicine, Sociology, Computer network, Social science, Macroeconomics, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391858735 |
|---|---|
| doi | https://doi.org/10.2196/47194 |
| ids.doi | https://doi.org/10.2196/47194 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38875675 |
| ids.openalex | https://openalex.org/W4391858735 |
| fwci | 0.9565227 |
| type | article |
| title | Identifying Links Between Productivity and Biobehavioral Rhythms Modeled From Multimodal Sensor Streams: Exploratory Quantitative Study |
| biblio.issue | |
| biblio.volume | 3 |
| biblio.last_page | e47194 |
| biblio.first_page | e47194 |
| topics[0].id | https://openalex.org/T12659 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9376000165939331 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Innovation Diffusion and Forecasting |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.901199996471405 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C135343436 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6818486452102661 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170406 |
| concepts[0].display_name | Rhythm |
| concepts[1].id | https://openalex.org/C42090638 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6330556869506836 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4048907 |
| concepts[1].display_name | STREAMS |
| concepts[2].id | https://openalex.org/C204983608 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5520820021629333 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2111958 |
| concepts[2].display_name | Productivity |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4798130989074707 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C85973986 |
| concepts[4].level | 2 |
| concepts[4].score | 0.41304659843444824 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1091731 |
| concepts[4].display_name | Exploratory research |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.37211742997169495 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35463210940361023 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32258912920951843 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C162324750 |
| concepts[8].level | 0 |
| concepts[8].score | 0.16774272918701172 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[8].display_name | Economics |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15020692348480225 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C144024400 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12493926286697388 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[10].display_name | Sociology |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.103054940700531 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| concepts[12].id | https://openalex.org/C36289849 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07066228985786438 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[12].display_name | Social science |
| concepts[13].id | https://openalex.org/C139719470 |
| concepts[13].level | 1 |
| concepts[13].score | 0.06856882572174072 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[13].display_name | Macroeconomics |
| concepts[14].id | https://openalex.org/C126322002 |
| concepts[14].level | 1 |
| concepts[14].score | 0.05961844325065613 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[14].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/rhythm |
| keywords[0].score | 0.6818486452102661 |
| keywords[0].display_name | Rhythm |
| keywords[1].id | https://openalex.org/keywords/streams |
| keywords[1].score | 0.6330556869506836 |
| keywords[1].display_name | STREAMS |
| keywords[2].id | https://openalex.org/keywords/productivity |
| keywords[2].score | 0.5520820021629333 |
| keywords[2].display_name | Productivity |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4798130989074707 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/exploratory-research |
| keywords[4].score | 0.41304659843444824 |
| keywords[4].display_name | Exploratory research |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.37211742997169495 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.35463210940361023 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.32258912920951843 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/economics |
| keywords[8].score | 0.16774272918701172 |
| keywords[8].display_name | Economics |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.15020692348480225 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/sociology |
| keywords[10].score | 0.12493926286697388 |
| keywords[10].display_name | Sociology |
| keywords[11].id | https://openalex.org/keywords/computer-network |
| keywords[11].score | 0.103054940700531 |
| keywords[11].display_name | Computer network |
| keywords[12].id | https://openalex.org/keywords/social-science |
| keywords[12].score | 0.07066228985786438 |
| keywords[12].display_name | Social science |
| keywords[13].id | https://openalex.org/keywords/macroeconomics |
| keywords[13].score | 0.06856882572174072 |
| keywords[13].display_name | Macroeconomics |
| keywords[14].id | https://openalex.org/keywords/internal-medicine |
| keywords[14].score | 0.05961844325065613 |
| keywords[14].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.2196/47194 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387286577 |
| locations[0].source.issn | 2817-1705 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2817-1705 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JMIR AI |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JMIR AI |
| locations[0].landing_page_url | https://doi.org/10.2196/47194 |
| locations[1].id | pmid:38875675 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JMIR AI |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38875675 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11066747 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JMIR AI |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11066747 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5078669479 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6558-4567 |
| authorships[0].author.display_name | Runze Yan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I51556381 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Virginia, Charlottesville, VA, United States. |
| authorships[0].institutions[0].id | https://openalex.org/I51556381 |
| authorships[0].institutions[0].ror | https://ror.org/0153tk833 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I51556381 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Virginia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Runze Yan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Virginia, Charlottesville, VA, United States. |
| authorships[1].author.id | https://openalex.org/A5075352732 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4965-7938 |
| authorships[1].author.display_name | Xinwen Liu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[1].affiliations[0].raw_affiliation_string | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[1].institutions[0].id | https://openalex.org/I74973139 |
| authorships[1].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Carnegie Mellon University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinwen Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[2].author.id | https://openalex.org/A5005483085 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8678-8585 |
| authorships[2].author.display_name | Janine M. Dutcher |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[2].affiliations[0].raw_affiliation_string | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[2].institutions[0].id | https://openalex.org/I74973139 |
| authorships[2].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Carnegie Mellon University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Janine M Dutcher |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[3].author.id | https://openalex.org/A5005080598 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5962-481X |
| authorships[3].author.display_name | Michael Tumminia |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Pittsburgh, Pittsburgh, PA, United States. |
| authorships[3].institutions[0].id | https://openalex.org/I170201317 |
| authorships[3].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Pittsburgh |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Michael J Tumminia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Pittsburgh, Pittsburgh, PA, United States. |
| authorships[4].author.id | https://openalex.org/A5034817385 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1434-4384 |
| authorships[4].author.display_name | Daniella K. Villalba |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[4].affiliations[0].raw_affiliation_string | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[4].institutions[0].id | https://openalex.org/I74973139 |
| authorships[4].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Carnegie Mellon University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Daniella Villalba |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[5].author.id | https://openalex.org/A5019172558 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2248-4600 |
| authorships[5].author.display_name | Sheldon Cohen |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[5].affiliations[0].raw_affiliation_string | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[5].institutions[0].id | https://openalex.org/I74973139 |
| authorships[5].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Carnegie Mellon University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sheldon Cohen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[6].author.id | https://openalex.org/A5019378435 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9604-6120 |
| authorships[6].author.display_name | J. David Creswell |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[6].affiliations[0].raw_affiliation_string | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[6].institutions[0].id | https://openalex.org/I74973139 |
| authorships[6].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Carnegie Mellon University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | John D Creswell |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[7].author.id | https://openalex.org/A5001703096 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6659-0651 |
| authorships[7].author.display_name | Kasey G. Creswell |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[7].affiliations[0].raw_affiliation_string | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[7].institutions[0].id | https://openalex.org/I74973139 |
| authorships[7].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Carnegie Mellon University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Kasey Creswell |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Carnegie Mellon University, Pittsburgh, PA, United States. |
| authorships[8].author.id | https://openalex.org/A5040915036 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9235-5324 |
| authorships[8].author.display_name | Jennifer Mankoff |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[8].affiliations[0].raw_affiliation_string | University of Washington, Seattle, WA, United States. |
| authorships[8].institutions[0].id | https://openalex.org/I201448701 |
| authorships[8].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Washington |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jennifer Mankoff |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | University of Washington, Seattle, WA, United States. |
| authorships[9].author.id | https://openalex.org/A5032134965 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-3004-0770 |
| authorships[9].author.display_name | Anind K. Dey |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[9].affiliations[0].raw_affiliation_string | University of Washington, Seattle, WA, United States. |
| authorships[9].institutions[0].id | https://openalex.org/I201448701 |
| authorships[9].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | University of Washington |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Anind K Dey |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | University of Washington, Seattle, WA, United States. |
| authorships[10].author.id | https://openalex.org/A5069753270 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1575-385X |
| authorships[10].author.display_name | Afsaneh Doryab |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I51556381 |
| authorships[10].affiliations[0].raw_affiliation_string | University of Virginia, Charlottesville, VA, United States. |
| authorships[10].institutions[0].id | https://openalex.org/I51556381 |
| authorships[10].institutions[0].ror | https://ror.org/0153tk833 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I51556381 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | University of Virginia |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Afsaneh Doryab |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | University of Virginia, Charlottesville, VA, United States. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2196/47194 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identifying Links Between Productivity and Biobehavioral Rhythms Modeled From Multimodal Sensor Streams: Exploratory Quantitative Study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T12659 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9376000165939331 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Innovation Diffusion and Forecasting |
| related_works | https://openalex.org/W2010317732, https://openalex.org/W2483328176, https://openalex.org/W2061705145, https://openalex.org/W2072492413, https://openalex.org/W2997159972, https://openalex.org/W193205649, https://openalex.org/W4296378967, https://openalex.org/W45006177, https://openalex.org/W2064134577, https://openalex.org/W2373995729 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.2196/47194 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387286577 |
| best_oa_location.source.issn | 2817-1705 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2817-1705 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JMIR AI |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JMIR AI |
| best_oa_location.landing_page_url | https://doi.org/10.2196/47194 |
| primary_location.id | doi:10.2196/47194 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387286577 |
| primary_location.source.issn | 2817-1705 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2817-1705 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JMIR AI |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JMIR AI |
| primary_location.landing_page_url | https://doi.org/10.2196/47194 |
| publication_date | 2024-02-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2929576458, https://openalex.org/W1998391274, https://openalex.org/W1666528766, https://openalex.org/W2089135307, https://openalex.org/W2149873617, https://openalex.org/W2010996333, https://openalex.org/W4214846555, https://openalex.org/W4213428630, https://openalex.org/W4234725279, https://openalex.org/W2021990756, https://openalex.org/W2901527259, https://openalex.org/W2322240666, https://openalex.org/W2104247936, https://openalex.org/W2170631467, https://openalex.org/W2606013951, https://openalex.org/W2106884373, https://openalex.org/W2510353128, https://openalex.org/W2397853309, https://openalex.org/W2985521581, https://openalex.org/W2056796467, https://openalex.org/W2318091764, https://openalex.org/W2663017374, https://openalex.org/W2973064743, https://openalex.org/W2601591590, https://openalex.org/W2065646693, https://openalex.org/W2015016744, https://openalex.org/W2099290073, https://openalex.org/W2954300939, https://openalex.org/W2944602137, https://openalex.org/W3004300305, https://openalex.org/W2078074240, https://openalex.org/W4289107359, https://openalex.org/W2162772535, https://openalex.org/W2932881901, https://openalex.org/W4245862134, https://openalex.org/W2031763756, https://openalex.org/W2098342740, https://openalex.org/W2111733062, https://openalex.org/W1865920368, https://openalex.org/W71228264, https://openalex.org/W3045153201, https://openalex.org/W2942640105, https://openalex.org/W3011735246, https://openalex.org/W3092950199, https://openalex.org/W2096943047 |
| referenced_works_count | 45 |
| abstract_inverted_index.0 | 89 |
| abstract_inverted_index.a | 53, 73, 131, 141, 180, 202 |
| abstract_inverted_index.1, | 94, 117, 200 |
| abstract_inverted_index.16 | 77 |
| abstract_inverted_index.4) | 91 |
| abstract_inverted_index.6, | 95, 118 |
| abstract_inverted_index.In | 48 |
| abstract_inverted_index.SE | 190, 204 |
| abstract_inverted_index.To | 98 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.in | 127, 159 |
| abstract_inverted_index.of | 60, 76, 130, 163, 191, 206 |
| abstract_inverted_index.on | 109 |
| abstract_inverted_index.or | 152 |
| abstract_inverted_index.to | 17, 32, 90, 144, 217, 238 |
| abstract_inverted_index.we | 51, 102, 139 |
| abstract_inverted_index.15, | 119 |
| abstract_inverted_index.15. | 97 |
| abstract_inverted_index.188 | 69 |
| abstract_inverted_index.Our | 124 |
| abstract_inverted_index.The | 79, 222 |
| abstract_inverted_index.and | 6, 26, 37, 65, 96, 120, 150, 165, 188, 219, 242 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.for | 134, 194, 226 |
| abstract_inverted_index.has | 214 |
| abstract_inverted_index.low | 153 |
| abstract_inverted_index.set | 58 |
| abstract_inverted_index.the | 100, 121, 128, 160, 189, 192, 195, 215 |
| abstract_inverted_index.was | 184 |
| abstract_inverted_index.This | 29 |
| abstract_inverted_index.aims | 31 |
| abstract_inverted_index.also | 174 |
| abstract_inverted_index.been | 15 |
| abstract_inverted_index.data | 45, 57, 61, 113 |
| abstract_inverted_index.each | 135 |
| abstract_inverted_index.from | 41, 63, 88 |
| abstract_inverted_index.have | 14, 224 |
| abstract_inverted_index.high | 151 |
| abstract_inverted_index.over | 72 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.that | 231 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.used | 52 |
| abstract_inverted_index.week | 199 |
| abstract_inverted_index.with | 9, 168, 201, 233 |
| abstract_inverted_index.work | 243 |
| abstract_inverted_index.worn | 67 |
| abstract_inverted_index.align | 232 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.daily | 84 |
| abstract_inverted_index.data, | 101 |
| abstract_inverted_index.exist | 158 |
| abstract_inverted_index.high- | 164 |
| abstract_inverted_index.human | 105, 234 |
| abstract_inverted_index.links | 34 |
| abstract_inverted_index.lower | 207 |
| abstract_inverted_index.model | 133 |
| abstract_inverted_index.novel | 228 |
| abstract_inverted_index.phase | 193 |
| abstract_inverted_index.score | 86 |
| abstract_inverted_index.sleep | 23 |
| abstract_inverted_index.study | 30 |
| abstract_inverted_index.their | 82 |
| abstract_inverted_index.those | 169 |
| abstract_inverted_index.weeks | 93, 116 |
| abstract_inverted_index.cyclic | 104 |
| abstract_inverted_index.during | 92, 115, 198 |
| abstract_inverted_index.health | 19 |
| abstract_inverted_index.higher | 176, 203 |
| abstract_inverted_index.linked | 16 |
| abstract_inverted_index.mobile | 44, 55, 111 |
| abstract_inverted_index.period | 75, 197 |
| abstract_inverted_index.rhythm | 132, 148, 172, 208 |
| abstract_inverted_index.sensor | 136 |
| abstract_inverted_index.study, | 50 |
| abstract_inverted_index.weeks. | 78, 123 |
| abstract_inverted_index.24-hour | 196 |
| abstract_inverted_index.Fitbits | 66 |
| abstract_inverted_index.Methods | 47 |
| abstract_inverted_index.Results | 156 |
| abstract_inverted_index.analyze | 99 |
| abstract_inverted_index.between | 35, 147, 186 |
| abstract_inverted_index.college | 70 |
| abstract_inverted_index.cycles. | 11 |
| abstract_inverted_index.greater | 171 |
| abstract_inverted_index.health, | 240 |
| abstract_inverted_index.improve | 239 |
| abstract_inverted_index.issues, | 20 |
| abstract_inverted_index.levels. | 155, 178 |
| abstract_inverted_index.modeled | 40, 103 |
| abstract_inverted_index.rhythms | 2, 13, 39, 162, 213, 237 |
| abstract_inverted_index.sensing | 56, 112 |
| abstract_inverted_index.systems | 230 |
| abstract_inverted_index.various | 18 |
| abstract_inverted_index.(ranging | 87 |
| abstract_inverted_index.Abnormal | 12 |
| abstract_inverted_index.Modeling | 211 |
| abstract_inverted_index.Notably, | 179 |
| abstract_inverted_index.adjacent | 122 |
| abstract_inverted_index.approach | 143 |
| abstract_inverted_index.behavior | 106 |
| abstract_inverted_index.building | 227 |
| abstract_inverted_index.creation | 129 |
| abstract_inverted_index.feature. | 137 |
| abstract_inverted_index.findings | 223 |
| abstract_inverted_index.forecast | 220 |
| abstract_inverted_index.gathered | 114 |
| abstract_inverted_index.identify | 33, 145 |
| abstract_inverted_index.negative | 181 |
| abstract_inverted_index.obesity, | 25 |
| abstract_inverted_index.observed | 185 |
| abstract_inverted_index.patterns | 107 |
| abstract_inverted_index.quantify | 218 |
| abstract_inverted_index.reported | 81 |
| abstract_inverted_index.resulted | 126 |
| abstract_inverted_index.streams. | 46 |
| abstract_inverted_index.students | 71 |
| abstract_inverted_index.Objective | 28 |
| abstract_inverted_index.beings’ | 235 |
| abstract_inverted_index.collected | 43, 62 |
| abstract_inverted_index.developed | 140 |
| abstract_inverted_index.passively | 42 |
| abstract_inverted_index.potential | 216 |
| abstract_inverted_index.processes | 8 |
| abstract_inverted_index.repeating | 10 |
| abstract_inverted_index.stability | 149, 173 |
| abstract_inverted_index.students, | 167 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.consisting | 59 |
| abstract_inverted_index.continuous | 74 |
| abstract_inverted_index.disorders, | 24 |
| abstract_inverted_index.exhibiting | 175 |
| abstract_inverted_index.indicative | 205 |
| abstract_inverted_index.multimodal | 54, 110 |
| abstract_inverted_index.stability. | 209 |
| abstract_inverted_index.(C=–0.16) | 183 |
| abstract_inverted_index.Conclusions | 210 |
| abstract_inverted_index.Differences | 157 |
| abstract_inverted_index.behavioral, | 5 |
| abstract_inverted_index.biological, | 4 |
| abstract_inverted_index.connections | 146 |
| abstract_inverted_index.correlation | 182 |
| abstract_inverted_index.cyber-human | 229 |
| abstract_inverted_index.depression. | 27 |
| abstract_inverted_index.methodology | 125 |
| abstract_inverted_index.smartphones | 64 |
| abstract_inverted_index.well-being, | 241 |
| abstract_inverted_index.implications | 225 |
| abstract_inverted_index.participants | 80 |
| abstract_inverted_index.performance. | 244 |
| abstract_inverted_index.productivity | 36, 85, 154, 177, 187 |
| abstract_inverted_index.psychosocial | 7 |
| abstract_inverted_index.Additionally, | 138 |
| abstract_inverted_index.Biobehavioral | 1 |
| abstract_inverted_index.biobehavioral | 38, 161, 212, 236 |
| abstract_inverted_index.demonstrating | 170 |
| abstract_inverted_index.productivity. | 221 |
| abstract_inverted_index.self-evaluated | 83 |
| abstract_inverted_index.low-productivity | 166 |
| abstract_inverted_index.correlation-based | 142 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.66030272 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |