Identifying patterns in administrative tasks through structural topic modeling: A study of task definitions, prevalence, and shifts in a mental health practice’s operations during the COVID-19 pandemic Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1093/jamia/ocab185
Objective This case study illustrates the use of natural language processing for identifying administrative task categories, prevalence, and shifts necessitated by a major event (the COVID-19 [coronavirus disease 2019] pandemic) from user-generated data stored as free text in a task management system for a multisite mental health practice with 40 clinicians and 13 administrative staff members. Materials and Methods Structural topic modeling was applied on 7079 task sequences from 13 administrative users of a Health Insurance Portability and Accountability Act–compliant task management platform. Context was obtained through interviews with an expert panel. Results Ten task definitions spanning 3 major categories were identified, and their prevalence estimated. Significant shifts in task prevalence due to the pandemic were detected for tasks like billing inquiries to insurers, appointment cancellations, patient balances, and new patient follow-up. Conclusions Structural topic modeling effectively detects task categories, prevalence, and shifts, providing opportunities for healthcare providers to reconsider staff roles and to optimize workflows and resource allocation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/jamia/ocab185
- https://academic.oup.com/jamia/article-pdf/28/12/2707/41325424/ocab185.pdf
- OA Status
- bronze
- Cited By
- 9
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3195151010
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3195151010Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/jamia/ocab185Digital Object Identifier
- Title
-
Identifying patterns in administrative tasks through structural topic modeling: A study of task definitions, prevalence, and shifts in a mental health practice’s operations during the COVID-19 pandemicWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-12Full publication date if available
- Authors
-
Dessislava A. Pachamanova, Wiljeana Jackson Glover, Zhi Li, Michael Docktor, Nitin GujralList of authors in order
- Landing page
-
https://doi.org/10.1093/jamia/ocab185Publisher landing page
- PDF URL
-
https://academic.oup.com/jamia/article-pdf/28/12/2707/41325424/ocab185.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/jamia/article-pdf/28/12/2707/41325424/ocab185.pdfDirect OA link when available
- Concepts
-
Task (project management), Context (archaeology), Pandemic, Workflow, Mental health, Health Insurance Portability and Accountability Act, Software portability, Computer science, Health care, Task analysis, Applied psychology, Psychology, Medicine, Coronavirus disease 2019 (COVID-19), Disease, Computer security, Confidentiality, Psychiatry, Political science, Geography, Database, Infectious disease (medical specialty), Pathology, Law, Archaeology, Programming language, Economics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 1, 2022: 1, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3195151010 |
|---|---|
| doi | https://doi.org/10.1093/jamia/ocab185 |
| ids.doi | https://doi.org/10.1093/jamia/ocab185 |
| ids.mag | 3195151010 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34390582 |
| ids.openalex | https://openalex.org/W3195151010 |
| fwci | 10.04150642 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000086382 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | COVID-19 |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008603 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Mental Health |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D058873 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Pandemics |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D015995 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Prevalence |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000086402 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | SARS-CoV-2 |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000086382 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | COVID-19 |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008603 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Mental Health |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D058873 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Pandemics |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D015995 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Prevalence |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000086402 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | SARS-CoV-2 |
| type | article |
| title | Identifying patterns in administrative tasks through structural topic modeling: A study of task definitions, prevalence, and shifts in a mental health practice’s operations during the COVID-19 pandemic |
| biblio.issue | 12 |
| biblio.volume | 28 |
| biblio.last_page | 2715 |
| biblio.first_page | 2707 |
| topics[0].id | https://openalex.org/T13910 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3300 |
| topics[0].subfield.display_name | General Social Sciences |
| topics[0].display_name | Computational and Text Analysis Methods |
| topics[1].id | https://openalex.org/T12394 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9304999709129333 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Insurance and Financial Risk Management |
| is_xpac | False |
| apc_list.value | 3967 |
| apc_list.currency | USD |
| apc_list.value_usd | 3967 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780451532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7567176222801208 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[0].display_name | Task (project management) |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7038643956184387 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C89623803 |
| concepts[2].level | 5 |
| concepts[2].score | 0.6083675026893616 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12184 |
| concepts[2].display_name | Pandemic |
| concepts[3].id | https://openalex.org/C177212765 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5615856051445007 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[3].display_name | Workflow |
| concepts[4].id | https://openalex.org/C134362201 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5304835438728333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q317309 |
| concepts[4].display_name | Mental health |
| concepts[5].id | https://openalex.org/C2778306010 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4894970655441284 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q606563 |
| concepts[5].display_name | Health Insurance Portability and Accountability Act |
| concepts[6].id | https://openalex.org/C63000827 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4721161127090454 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3080428 |
| concepts[6].display_name | Software portability |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4666317403316498 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C160735492 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42779237031936646 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[8].display_name | Health care |
| concepts[9].id | https://openalex.org/C175154964 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4201086163520813 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q380077 |
| concepts[9].display_name | Task analysis |
| concepts[10].id | https://openalex.org/C75630572 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3241133987903595 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q538904 |
| concepts[10].display_name | Applied psychology |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.29859742522239685 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2891956567764282 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C3008058167 |
| concepts[13].level | 4 |
| concepts[13].score | 0.2503041923046112 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[13].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[14].id | https://openalex.org/C2779134260 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2225697636604309 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[14].display_name | Disease |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.20924681425094604 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| concepts[16].id | https://openalex.org/C71745522 |
| concepts[16].level | 2 |
| concepts[16].score | 0.1821267306804657 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2476929 |
| concepts[16].display_name | Confidentiality |
| concepts[17].id | https://openalex.org/C118552586 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1376446783542633 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[17].display_name | Psychiatry |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.13175249099731445 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C205649164 |
| concepts[19].level | 0 |
| concepts[19].score | 0.12534722685813904 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[19].display_name | Geography |
| concepts[20].id | https://openalex.org/C77088390 |
| concepts[20].level | 1 |
| concepts[20].score | 0.1082598865032196 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[20].display_name | Database |
| concepts[21].id | https://openalex.org/C524204448 |
| concepts[21].level | 3 |
| concepts[21].score | 0.10201001167297363 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[21].display_name | Infectious disease (medical specialty) |
| concepts[22].id | https://openalex.org/C142724271 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[22].display_name | Pathology |
| concepts[23].id | https://openalex.org/C199539241 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[23].display_name | Law |
| concepts[24].id | https://openalex.org/C166957645 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[24].display_name | Archaeology |
| concepts[25].id | https://openalex.org/C199360897 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[25].display_name | Programming language |
| concepts[26].id | https://openalex.org/C162324750 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[26].display_name | Economics |
| concepts[27].id | https://openalex.org/C187736073 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[27].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/task |
| keywords[0].score | 0.7567176222801208 |
| keywords[0].display_name | Task (project management) |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.7038643956184387 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/pandemic |
| keywords[2].score | 0.6083675026893616 |
| keywords[2].display_name | Pandemic |
| keywords[3].id | https://openalex.org/keywords/workflow |
| keywords[3].score | 0.5615856051445007 |
| keywords[3].display_name | Workflow |
| keywords[4].id | https://openalex.org/keywords/mental-health |
| keywords[4].score | 0.5304835438728333 |
| keywords[4].display_name | Mental health |
| keywords[5].id | https://openalex.org/keywords/health-insurance-portability-and-accountability-act |
| keywords[5].score | 0.4894970655441284 |
| keywords[5].display_name | Health Insurance Portability and Accountability Act |
| keywords[6].id | https://openalex.org/keywords/software-portability |
| keywords[6].score | 0.4721161127090454 |
| keywords[6].display_name | Software portability |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4666317403316498 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/health-care |
| keywords[8].score | 0.42779237031936646 |
| keywords[8].display_name | Health care |
| keywords[9].id | https://openalex.org/keywords/task-analysis |
| keywords[9].score | 0.4201086163520813 |
| keywords[9].display_name | Task analysis |
| keywords[10].id | https://openalex.org/keywords/applied-psychology |
| keywords[10].score | 0.3241133987903595 |
| keywords[10].display_name | Applied psychology |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.29859742522239685 |
| keywords[11].display_name | Psychology |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.2891956567764282 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[13].score | 0.2503041923046112 |
| keywords[13].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[14].id | https://openalex.org/keywords/disease |
| keywords[14].score | 0.2225697636604309 |
| keywords[14].display_name | Disease |
| keywords[15].id | https://openalex.org/keywords/computer-security |
| keywords[15].score | 0.20924681425094604 |
| keywords[15].display_name | Computer security |
| keywords[16].id | https://openalex.org/keywords/confidentiality |
| keywords[16].score | 0.1821267306804657 |
| keywords[16].display_name | Confidentiality |
| keywords[17].id | https://openalex.org/keywords/psychiatry |
| keywords[17].score | 0.1376446783542633 |
| keywords[17].display_name | Psychiatry |
| keywords[18].id | https://openalex.org/keywords/political-science |
| keywords[18].score | 0.13175249099731445 |
| keywords[18].display_name | Political science |
| keywords[19].id | https://openalex.org/keywords/geography |
| keywords[19].score | 0.12534722685813904 |
| keywords[19].display_name | Geography |
| keywords[20].id | https://openalex.org/keywords/database |
| keywords[20].score | 0.1082598865032196 |
| keywords[20].display_name | Database |
| keywords[21].id | https://openalex.org/keywords/infectious-disease |
| keywords[21].score | 0.10201001167297363 |
| keywords[21].display_name | Infectious disease (medical specialty) |
| language | en |
| locations[0].id | doi:10.1093/jamia/ocab185 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S129839026 |
| locations[0].source.issn | 1067-5027, 1527-974X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1067-5027 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the American Medical Informatics Association |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | https://academic.oup.com/jamia/article-pdf/28/12/2707/41325424/ocab185.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the American Medical Informatics Association |
| locations[0].landing_page_url | https://doi.org/10.1093/jamia/ocab185 |
| locations[1].id | pmid:34390582 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of the American Medical Informatics Association : JAMIA |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34390582 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8633666 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Am Med Inform Assoc |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8633666 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5002632112 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1373-1553 |
| authorships[0].author.display_name | Dessislava A. Pachamanova |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I96062909 |
| authorships[0].affiliations[0].raw_affiliation_string | Mathematics and Science Division, Babson College, Wellesley, Massachusetts, USA |
| authorships[0].institutions[0].id | https://openalex.org/I96062909 |
| authorships[0].institutions[0].ror | https://ror.org/01f0syq13 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I96062909 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Babson College |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dessislava Pachamanova |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Mathematics and Science Division, Babson College, Wellesley, Massachusetts, USA |
| authorships[1].author.id | https://openalex.org/A5034340583 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7754-2575 |
| authorships[1].author.display_name | Wiljeana Jackson Glover |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I96062909 |
| authorships[1].affiliations[0].raw_affiliation_string | Operations and Information Management Division, Babson College, Wellesley, Massachusetts, USA |
| authorships[1].institutions[0].id | https://openalex.org/I96062909 |
| authorships[1].institutions[0].ror | https://ror.org/01f0syq13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I96062909 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Babson College |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wiljeana Glover |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Operations and Information Management Division, Babson College, Wellesley, Massachusetts, USA |
| authorships[2].author.id | https://openalex.org/A5100382217 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5747-7545 |
| authorships[2].author.display_name | Zhi Li |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I96062909 |
| authorships[2].affiliations[0].raw_affiliation_string | Operations and Information Management Division, Babson College, Wellesley, Massachusetts, USA |
| authorships[2].institutions[0].id | https://openalex.org/I96062909 |
| authorships[2].institutions[0].ror | https://ror.org/01f0syq13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I96062909 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Babson College |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhi Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Operations and Information Management Division, Babson College, Wellesley, Massachusetts, USA |
| authorships[3].author.id | https://openalex.org/A5068288350 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9540-6382 |
| authorships[3].author.display_name | Michael Docktor |
| authorships[3].countries | US |
| authorships[3].affiliations[0].raw_affiliation_string | Dock Health, Boston, Massachusetts, USA |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I1288882113 |
| authorships[3].affiliations[1].raw_affiliation_string | Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1288882113 |
| authorships[3].institutions[0].ror | https://ror.org/00dvg7y05 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1288882113 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Boston Children's Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Michael Docktor |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA, Dock Health, Boston, Massachusetts, USA |
| authorships[4].author.id | https://openalex.org/A5024961663 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7189-7853 |
| authorships[4].author.display_name | Nitin Gujral |
| authorships[4].affiliations[0].raw_affiliation_string | Dock Health, Boston, Massachusetts, USA |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Nitin Gujral |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Dock Health, Boston, Massachusetts, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/jamia/article-pdf/28/12/2707/41325424/ocab185.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identifying patterns in administrative tasks through structural topic modeling: A study of task definitions, prevalence, and shifts in a mental health practice’s operations during the COVID-19 pandemic |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13910 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3300 |
| primary_topic.subfield.display_name | General Social Sciences |
| primary_topic.display_name | Computational and Text Analysis Methods |
| related_works | https://openalex.org/W107105315, https://openalex.org/W4367156293, https://openalex.org/W1584537303, https://openalex.org/W4388155270, https://openalex.org/W1872724644, https://openalex.org/W2750549761, https://openalex.org/W28826848, https://openalex.org/W2122272819, https://openalex.org/W2130894091, https://openalex.org/W4301229064 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/jamia/ocab185 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S129839026 |
| best_oa_location.source.issn | 1067-5027, 1527-974X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1067-5027 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of the American Medical Informatics Association |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://academic.oup.com/jamia/article-pdf/28/12/2707/41325424/ocab185.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the American Medical Informatics Association |
| best_oa_location.landing_page_url | https://doi.org/10.1093/jamia/ocab185 |
| primary_location.id | doi:10.1093/jamia/ocab185 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S129839026 |
| primary_location.source.issn | 1067-5027, 1527-974X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1067-5027 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the American Medical Informatics Association |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | https://academic.oup.com/jamia/article-pdf/28/12/2707/41325424/ocab185.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the American Medical Informatics Association |
| primary_location.landing_page_url | https://doi.org/10.1093/jamia/ocab185 |
| publication_date | 2021-08-12 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2598272139, https://openalex.org/W2146494928, https://openalex.org/W4254373887, https://openalex.org/W2091893465, https://openalex.org/W3033119897, https://openalex.org/W2142144051, https://openalex.org/W3129040096, https://openalex.org/W3157373797, https://openalex.org/W6794528033, https://openalex.org/W2110757688, https://openalex.org/W6771504726, https://openalex.org/W3121702601, https://openalex.org/W3113519334, https://openalex.org/W2271006548, https://openalex.org/W2306119308, https://openalex.org/W6788857705, https://openalex.org/W3128346264, https://openalex.org/W3099256733, https://openalex.org/W3038930876, https://openalex.org/W3159088809, https://openalex.org/W2165612380, https://openalex.org/W6639619044, https://openalex.org/W2521579474, https://openalex.org/W2223092947, https://openalex.org/W2162317738, https://openalex.org/W3020199733, https://openalex.org/W6766750762, https://openalex.org/W1996725528, https://openalex.org/W2032968606, https://openalex.org/W1880262756, https://openalex.org/W2969468266, https://openalex.org/W1516184288, https://openalex.org/W3118826438, https://openalex.org/W2994742437 |
| referenced_works_count | 34 |
| abstract_inverted_index.3 | 98 |
| abstract_inverted_index.a | 22, 39, 44, 74 |
| abstract_inverted_index.13 | 53, 70 |
| abstract_inverted_index.40 | 50 |
| abstract_inverted_index.an | 90 |
| abstract_inverted_index.as | 35 |
| abstract_inverted_index.by | 21 |
| abstract_inverted_index.in | 38, 109 |
| abstract_inverted_index.of | 8, 73 |
| abstract_inverted_index.on | 65 |
| abstract_inverted_index.to | 113, 123, 149, 154 |
| abstract_inverted_index.Ten | 94 |
| abstract_inverted_index.and | 18, 52, 58, 78, 103, 129, 142, 153, 157 |
| abstract_inverted_index.due | 112 |
| abstract_inverted_index.for | 12, 43, 118, 146 |
| abstract_inverted_index.new | 130 |
| abstract_inverted_index.the | 6, 114 |
| abstract_inverted_index.use | 7 |
| abstract_inverted_index.was | 63, 85 |
| abstract_inverted_index.(the | 25 |
| abstract_inverted_index.7079 | 66 |
| abstract_inverted_index.This | 2 |
| abstract_inverted_index.case | 3 |
| abstract_inverted_index.data | 33 |
| abstract_inverted_index.free | 36 |
| abstract_inverted_index.from | 31, 69 |
| abstract_inverted_index.like | 120 |
| abstract_inverted_index.task | 15, 40, 67, 81, 95, 110, 139 |
| abstract_inverted_index.text | 37 |
| abstract_inverted_index.were | 101, 116 |
| abstract_inverted_index.with | 49, 89 |
| abstract_inverted_index.2019] | 29 |
| abstract_inverted_index.event | 24 |
| abstract_inverted_index.major | 23, 99 |
| abstract_inverted_index.roles | 152 |
| abstract_inverted_index.staff | 55, 151 |
| abstract_inverted_index.study | 4 |
| abstract_inverted_index.tasks | 119 |
| abstract_inverted_index.their | 104 |
| abstract_inverted_index.topic | 61, 135 |
| abstract_inverted_index.users | 72 |
| abstract_inverted_index.Health | 75 |
| abstract_inverted_index.expert | 91 |
| abstract_inverted_index.health | 47 |
| abstract_inverted_index.mental | 46 |
| abstract_inverted_index.panel. | 92 |
| abstract_inverted_index.shifts | 19, 108 |
| abstract_inverted_index.stored | 34 |
| abstract_inverted_index.system | 42 |
| abstract_inverted_index.Context | 84 |
| abstract_inverted_index.Methods | 59 |
| abstract_inverted_index.Results | 93 |
| abstract_inverted_index.applied | 64 |
| abstract_inverted_index.billing | 121 |
| abstract_inverted_index.detects | 138 |
| abstract_inverted_index.disease | 28 |
| abstract_inverted_index.natural | 9 |
| abstract_inverted_index.patient | 127, 131 |
| abstract_inverted_index.shifts, | 143 |
| abstract_inverted_index.through | 87 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.COVID-19 | 26 |
| abstract_inverted_index.detected | 117 |
| abstract_inverted_index.language | 10 |
| abstract_inverted_index.members. | 56 |
| abstract_inverted_index.modeling | 62, 136 |
| abstract_inverted_index.obtained | 86 |
| abstract_inverted_index.optimize | 155 |
| abstract_inverted_index.pandemic | 115 |
| abstract_inverted_index.practice | 48 |
| abstract_inverted_index.resource | 158 |
| abstract_inverted_index.spanning | 97 |
| abstract_inverted_index.Insurance | 76 |
| abstract_inverted_index.Materials | 57 |
| abstract_inverted_index.Objective | 1 |
| abstract_inverted_index.balances, | 128 |
| abstract_inverted_index.inquiries | 122 |
| abstract_inverted_index.insurers, | 124 |
| abstract_inverted_index.multisite | 45 |
| abstract_inverted_index.pandemic) | 30 |
| abstract_inverted_index.platform. | 83 |
| abstract_inverted_index.providers | 148 |
| abstract_inverted_index.providing | 144 |
| abstract_inverted_index.sequences | 68 |
| abstract_inverted_index.workflows | 156 |
| abstract_inverted_index.Structural | 60, 134 |
| abstract_inverted_index.categories | 100 |
| abstract_inverted_index.clinicians | 51 |
| abstract_inverted_index.estimated. | 106 |
| abstract_inverted_index.follow-up. | 132 |
| abstract_inverted_index.healthcare | 147 |
| abstract_inverted_index.interviews | 88 |
| abstract_inverted_index.management | 41, 82 |
| abstract_inverted_index.prevalence | 105, 111 |
| abstract_inverted_index.processing | 11 |
| abstract_inverted_index.reconsider | 150 |
| abstract_inverted_index.Conclusions | 133 |
| abstract_inverted_index.Portability | 77 |
| abstract_inverted_index.Significant | 107 |
| abstract_inverted_index.allocation. | 159 |
| abstract_inverted_index.appointment | 125 |
| abstract_inverted_index.categories, | 16, 140 |
| abstract_inverted_index.definitions | 96 |
| abstract_inverted_index.effectively | 137 |
| abstract_inverted_index.identified, | 102 |
| abstract_inverted_index.identifying | 13 |
| abstract_inverted_index.illustrates | 5 |
| abstract_inverted_index.prevalence, | 17, 141 |
| abstract_inverted_index.[coronavirus | 27 |
| abstract_inverted_index.necessitated | 20 |
| abstract_inverted_index.opportunities | 145 |
| abstract_inverted_index.Accountability | 79 |
| abstract_inverted_index.administrative | 14, 54, 71 |
| abstract_inverted_index.cancellations, | 126 |
| abstract_inverted_index.user-generated | 32 |
| abstract_inverted_index.Act–compliant | 80 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5002632112 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I96062909 |
| citation_normalized_percentile.value | 0.97998861 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |