Identifying Premature Ventricular Complexes from Outflow Tracts Based on PVC Configuration: A Machine Learning Approach Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/jcm12175558
Background: Current inferences about the site of origin (SOO) of premature ventricular complexes (PVC) from the surface ECG have not been subjected to newer data analytic techniques that identify signals that are not recognized by visual inspection. Aims: The objective of this study was to apply data analytics to PVC characteristics. Methods: PVCs from 12-lead ECGs of a consecutive series of 338 individuals were examined by unsupervised machine learning cluster analysis, and indexes were compared to a composite criterion for SOO. Results: Data analytics found that V1S plus V2S ≤ 9.25 of the PVC had a LVOT origin (sensitivity 95.4%; specificity 97.5%). V1R + V2R + V3R > 15.0 (a RBBB configuration) likely had a LVOT origin. PVCs with V1S plus V2S > 12.75 (LBBB configuration) likely had a RVOT origin. PVC with V1S plus V2S > 14.25 (LBBB configuration) and all inferior leads positive likely had a RVOT origin. Conclusion: Newer data analytic techniques provide a non-invasive approach to identifying PVC SOO, which should be useful for the clinician evaluating a 12-lead ECG.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/jcm12175558
- https://www.mdpi.com/2077-0383/12/17/5558/pdf?version=1693272240
- OA Status
- gold
- Cited By
- 6
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386220165
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386220165Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/jcm12175558Digital Object Identifier
- Title
-
Identifying Premature Ventricular Complexes from Outflow Tracts Based on PVC Configuration: A Machine Learning ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-26Full publication date if available
- Authors
-
Sargun Bajaj, Matthew T. Bennett, Simon W. RabkinList of authors in order
- Landing page
-
https://doi.org/10.3390/jcm12175558Publisher landing page
- PDF URL
-
https://www.mdpi.com/2077-0383/12/17/5558/pdf?version=1693272240Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2077-0383/12/17/5558/pdf?version=1693272240Direct OA link when available
- Concepts
-
Medicine, Cardiology, Internal medicine, Analytics, Cluster (spacecraft), Unsupervised learning, Artificial intelligence, Machine learning, Data mining, Computer science, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386220165 |
|---|---|
| doi | https://doi.org/10.3390/jcm12175558 |
| ids.doi | https://doi.org/10.3390/jcm12175558 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37685626 |
| ids.openalex | https://openalex.org/W4386220165 |
| fwci | 2.01430128 |
| type | article |
| title | Identifying Premature Ventricular Complexes from Outflow Tracts Based on PVC Configuration: A Machine Learning Approach |
| biblio.issue | 17 |
| biblio.volume | 12 |
| biblio.last_page | 5558 |
| biblio.first_page | 5558 |
| topics[0].id | https://openalex.org/T11217 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | Cardiac Arrhythmias and Treatments |
| topics[1].id | https://openalex.org/T10217 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiac electrophysiology and arrhythmias |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8627517819404602 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C164705383 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5246822237968445 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[1].display_name | Cardiology |
| concepts[2].id | https://openalex.org/C126322002 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4879991114139557 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[2].display_name | Internal medicine |
| concepts[3].id | https://openalex.org/C79158427 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45930537581443787 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[3].display_name | Analytics |
| concepts[4].id | https://openalex.org/C164866538 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43701618909835815 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q367351 |
| concepts[4].display_name | Cluster (spacecraft) |
| concepts[5].id | https://openalex.org/C8038995 |
| concepts[5].level | 2 |
| concepts[5].score | 0.435829758644104 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[5].display_name | Unsupervised learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3685450851917267 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35116046667099 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.26020658016204834 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.8627517819404602 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/cardiology |
| keywords[1].score | 0.5246822237968445 |
| keywords[1].display_name | Cardiology |
| keywords[2].id | https://openalex.org/keywords/internal-medicine |
| keywords[2].score | 0.4879991114139557 |
| keywords[2].display_name | Internal medicine |
| keywords[3].id | https://openalex.org/keywords/analytics |
| keywords[3].score | 0.45930537581443787 |
| keywords[3].display_name | Analytics |
| keywords[4].id | https://openalex.org/keywords/cluster |
| keywords[4].score | 0.43701618909835815 |
| keywords[4].display_name | Cluster (spacecraft) |
| keywords[5].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[5].score | 0.435829758644104 |
| keywords[5].display_name | Unsupervised learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3685450851917267 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.35116046667099 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.26020658016204834 |
| keywords[8].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.3390/jcm12175558 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737969411 |
| locations[0].source.issn | 2077-0383 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-0383 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Clinical Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2077-0383/12/17/5558/pdf?version=1693272240 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Clinical Medicine |
| locations[0].landing_page_url | https://doi.org/10.3390/jcm12175558 |
| locations[1].id | pmid:37685626 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of clinical medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37685626 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10487978 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10487978/pdf/jcm-12-05558.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Clin Med |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10487978 |
| locations[3].id | pmh:oai:mdpi.com:/2077-0383/12/17/5558/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Journal of Clinical Medicine; Volume 12; Issue 17; Pages: 5558 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/jcm12175558 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5072963437 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1228-4592 |
| authorships[0].author.display_name | Sargun Bajaj |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2802832906 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Medicine, Vancouver Hospital Cardiology, Vancouver, BC V5Z 1M9, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I2802832906 |
| authorships[0].institutions[0].ror | https://ror.org/02zg69r60 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I141074466, https://openalex.org/I141074466, https://openalex.org/I2799475292, https://openalex.org/I2802832906 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Vancouver General Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sargun Bajaj |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Medicine, Vancouver Hospital Cardiology, Vancouver, BC V5Z 1M9, Canada |
| authorships[1].author.id | https://openalex.org/A5090862297 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1675-8225 |
| authorships[1].author.display_name | Matthew T. Bennett |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC V5Z 1M9, Canada |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I2802832906 |
| authorships[1].affiliations[1].raw_affiliation_string | Faculty of Medicine, Vancouver Hospital Cardiology, Vancouver, BC V5Z 1M9, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I141945490 |
| authorships[1].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of British Columbia |
| authorships[1].institutions[1].id | https://openalex.org/I2802832906 |
| authorships[1].institutions[1].ror | https://ror.org/02zg69r60 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I141074466, https://openalex.org/I141074466, https://openalex.org/I2799475292, https://openalex.org/I2802832906 |
| authorships[1].institutions[1].country_code | CA |
| authorships[1].institutions[1].display_name | Vancouver General Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matthew T. Bennett |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC V5Z 1M9, Canada, Faculty of Medicine, Vancouver Hospital Cardiology, Vancouver, BC V5Z 1M9, Canada |
| authorships[2].author.id | https://openalex.org/A5084294726 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8923-1152 |
| authorships[2].author.display_name | Simon W. Rabkin |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802832906 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Medicine, Vancouver Hospital Cardiology, Vancouver, BC V5Z 1M9, Canada |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I141945490 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC V5Z 1M9, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I141945490 |
| authorships[2].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of British Columbia |
| authorships[2].institutions[1].id | https://openalex.org/I2802832906 |
| authorships[2].institutions[1].ror | https://ror.org/02zg69r60 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I141074466, https://openalex.org/I141074466, https://openalex.org/I2799475292, https://openalex.org/I2802832906 |
| authorships[2].institutions[1].country_code | CA |
| authorships[2].institutions[1].display_name | Vancouver General Hospital |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Simon W. Rabkin |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC V5Z 1M9, Canada, Faculty of Medicine, Vancouver Hospital Cardiology, Vancouver, BC V5Z 1M9, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2077-0383/12/17/5558/pdf?version=1693272240 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identifying Premature Ventricular Complexes from Outflow Tracts Based on PVC Configuration: A Machine Learning Approach |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11217 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | Cardiac Arrhythmias and Treatments |
| related_works | https://openalex.org/W1531601525, https://openalex.org/W3196155444, https://openalex.org/W328659180, https://openalex.org/W4321844043, https://openalex.org/W3210156800, https://openalex.org/W4390062853, https://openalex.org/W4297883248, https://openalex.org/W3209574120, https://openalex.org/W4255830763, https://openalex.org/W4286799911 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/jcm12175558 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737969411 |
| best_oa_location.source.issn | 2077-0383 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-0383 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Clinical Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2077-0383/12/17/5558/pdf?version=1693272240 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Clinical Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.3390/jcm12175558 |
| primary_location.id | doi:10.3390/jcm12175558 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737969411 |
| primary_location.source.issn | 2077-0383 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-0383 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Clinical Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2077-0383/12/17/5558/pdf?version=1693272240 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Clinical Medicine |
| primary_location.landing_page_url | https://doi.org/10.3390/jcm12175558 |
| publication_date | 2023-08-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2942876537, https://openalex.org/W2068191504, https://openalex.org/W2044233653, https://openalex.org/W2052061973, https://openalex.org/W6639110152, https://openalex.org/W2141896613, https://openalex.org/W1964249972, https://openalex.org/W1998956212, https://openalex.org/W2935610558, https://openalex.org/W2152537482, https://openalex.org/W2128036715, https://openalex.org/W2105337807, https://openalex.org/W2953446638, https://openalex.org/W2771689939, https://openalex.org/W1712564456, https://openalex.org/W2123785188, https://openalex.org/W2807593075, https://openalex.org/W2901226889, https://openalex.org/W1987971958, https://openalex.org/W2015793204, https://openalex.org/W2567680020, https://openalex.org/W2972793973, https://openalex.org/W3092371739, https://openalex.org/W2794917071, https://openalex.org/W3127958347, https://openalex.org/W3137808187, https://openalex.org/W2965520043, https://openalex.org/W3047612076, https://openalex.org/W2045802718, https://openalex.org/W3189695121, https://openalex.org/W3196124997, https://openalex.org/W3092302756, https://openalex.org/W2994403349, https://openalex.org/W2292937196 |
| referenced_works_count | 34 |
| abstract_inverted_index.+ | 103, 105 |
| abstract_inverted_index.a | 57, 76, 95, 114, 128, 147, 156, 171 |
| abstract_inverted_index.(a | 109 |
| abstract_inverted_index.be | 165 |
| abstract_inverted_index.by | 34, 65 |
| abstract_inverted_index.of | 6, 9, 40, 56, 60, 91 |
| abstract_inverted_index.to | 22, 44, 48, 75, 159 |
| abstract_inverted_index.338 | 61 |
| abstract_inverted_index.ECG | 17 |
| abstract_inverted_index.PVC | 49, 93, 131, 161 |
| abstract_inverted_index.The | 38 |
| abstract_inverted_index.V1R | 102 |
| abstract_inverted_index.V1S | 86, 119, 133 |
| abstract_inverted_index.V2R | 104 |
| abstract_inverted_index.V2S | 88, 121, 135 |
| abstract_inverted_index.V3R | 106 |
| abstract_inverted_index.all | 141 |
| abstract_inverted_index.and | 71, 140 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.for | 79, 167 |
| abstract_inverted_index.had | 94, 113, 127, 146 |
| abstract_inverted_index.not | 19, 32 |
| abstract_inverted_index.the | 4, 15, 92, 168 |
| abstract_inverted_index.was | 43 |
| abstract_inverted_index.≤ | 89 |
| abstract_inverted_index.> | 107, 122, 136 |
| abstract_inverted_index.15.0 | 108 |
| abstract_inverted_index.9.25 | 90 |
| abstract_inverted_index.Data | 82 |
| abstract_inverted_index.ECG. | 173 |
| abstract_inverted_index.ECGs | 55 |
| abstract_inverted_index.LVOT | 96, 115 |
| abstract_inverted_index.PVCs | 52, 117 |
| abstract_inverted_index.RBBB | 110 |
| abstract_inverted_index.RVOT | 129, 148 |
| abstract_inverted_index.SOO, | 162 |
| abstract_inverted_index.SOO. | 80 |
| abstract_inverted_index.been | 20 |
| abstract_inverted_index.data | 24, 46, 152 |
| abstract_inverted_index.from | 14, 53 |
| abstract_inverted_index.have | 18 |
| abstract_inverted_index.plus | 87, 120, 134 |
| abstract_inverted_index.site | 5 |
| abstract_inverted_index.that | 27, 30, 85 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.were | 63, 73 |
| abstract_inverted_index.with | 118, 132 |
| abstract_inverted_index.(LBBB | 124, 138 |
| abstract_inverted_index.(PVC) | 13 |
| abstract_inverted_index.(SOO) | 8 |
| abstract_inverted_index.12.75 | 123 |
| abstract_inverted_index.14.25 | 137 |
| abstract_inverted_index.Aims: | 37 |
| abstract_inverted_index.Newer | 151 |
| abstract_inverted_index.about | 3 |
| abstract_inverted_index.apply | 45 |
| abstract_inverted_index.found | 84 |
| abstract_inverted_index.leads | 143 |
| abstract_inverted_index.newer | 23 |
| abstract_inverted_index.study | 42 |
| abstract_inverted_index.which | 163 |
| abstract_inverted_index.95.4%; | 99 |
| abstract_inverted_index.likely | 112, 126, 145 |
| abstract_inverted_index.origin | 7, 97 |
| abstract_inverted_index.series | 59 |
| abstract_inverted_index.should | 164 |
| abstract_inverted_index.useful | 166 |
| abstract_inverted_index.visual | 35 |
| abstract_inverted_index.12-lead | 54, 172 |
| abstract_inverted_index.97.5%). | 101 |
| abstract_inverted_index.Current | 1 |
| abstract_inverted_index.cluster | 69 |
| abstract_inverted_index.indexes | 72 |
| abstract_inverted_index.machine | 67 |
| abstract_inverted_index.origin. | 116, 130, 149 |
| abstract_inverted_index.provide | 155 |
| abstract_inverted_index.signals | 29 |
| abstract_inverted_index.surface | 16 |
| abstract_inverted_index.Methods: | 51 |
| abstract_inverted_index.Results: | 81 |
| abstract_inverted_index.analytic | 25, 153 |
| abstract_inverted_index.approach | 158 |
| abstract_inverted_index.compared | 74 |
| abstract_inverted_index.examined | 64 |
| abstract_inverted_index.identify | 28 |
| abstract_inverted_index.inferior | 142 |
| abstract_inverted_index.learning | 68 |
| abstract_inverted_index.positive | 144 |
| abstract_inverted_index.analysis, | 70 |
| abstract_inverted_index.analytics | 47, 83 |
| abstract_inverted_index.clinician | 169 |
| abstract_inverted_index.complexes | 12 |
| abstract_inverted_index.composite | 77 |
| abstract_inverted_index.criterion | 78 |
| abstract_inverted_index.objective | 39 |
| abstract_inverted_index.premature | 10 |
| abstract_inverted_index.subjected | 21 |
| abstract_inverted_index.evaluating | 170 |
| abstract_inverted_index.inferences | 2 |
| abstract_inverted_index.recognized | 33 |
| abstract_inverted_index.techniques | 26, 154 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Conclusion: | 150 |
| abstract_inverted_index.consecutive | 58 |
| abstract_inverted_index.identifying | 160 |
| abstract_inverted_index.individuals | 62 |
| abstract_inverted_index.inspection. | 36 |
| abstract_inverted_index.specificity | 100 |
| abstract_inverted_index.ventricular | 11 |
| abstract_inverted_index.(sensitivity | 98 |
| abstract_inverted_index.non-invasive | 157 |
| abstract_inverted_index.unsupervised | 66 |
| abstract_inverted_index.configuration) | 111, 125, 139 |
| abstract_inverted_index.characteristics. | 50 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5084294726 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I141945490, https://openalex.org/I2802832906 |
| citation_normalized_percentile.value | 0.85003304 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |