Identifying Spurious Correlations and Correcting them with an Explanation-based Learning Article Swipe
Misgina Tsighe Hagos
,
Kathleen M. Curran
,
Brian Mac Namee
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.08285
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.08285
Identifying spurious correlations learned by a trained model is at the core of refining a trained model and building a trustworthy model. We present a simple method to identify spurious correlations that have been learned by a model trained for image classification problems. We apply image-level perturbations and monitor changes in certainties of predictions made using the trained model. We demonstrate this approach using an image classification dataset that contains images with synthetically generated spurious regions and show that the trained model was overdependent on spurious regions. Moreover, we remove the learned spurious correlations with an explanation based learning approach.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.08285
- https://arxiv.org/pdf/2211.08285
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309213162
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309213162Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.08285Digital Object Identifier
- Title
-
Identifying Spurious Correlations and Correcting them with an Explanation-based LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-15Full publication date if available
- Authors
-
Misgina Tsighe Hagos, Kathleen M. Curran, Brian Mac NameeList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.08285Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.08285Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.08285Direct OA link when available
- Concepts
-
Spurious relationship, Artificial intelligence, Computer science, Trustworthiness, Image (mathematics), Pattern recognition (psychology), Machine learning, Simple (philosophy), Epistemology, Philosophy, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 5Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309213162 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.08285 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.08285 |
| ids.openalex | https://openalex.org/W4309213162 |
| fwci | |
| type | preprint |
| title | Identifying Spurious Correlations and Correcting them with an Explanation-based Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9927999973297119 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9743000268936157 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9424999952316284 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97256817 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9926742315292358 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1462316 |
| concepts[0].display_name | Spurious relationship |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6269304156303406 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6210988759994507 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153701036 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5793471932411194 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q659974 |
| concepts[3].display_name | Trustworthiness |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5764192342758179 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.516816258430481 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.45804187655448914 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2780586882 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42959412932395935 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[7].display_name | Simple (philosophy) |
| concepts[8].id | https://openalex.org/C111472728 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[8].display_name | Epistemology |
| concepts[9].id | https://openalex.org/C138885662 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[9].display_name | Philosophy |
| concepts[10].id | https://openalex.org/C38652104 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[10].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/spurious-relationship |
| keywords[0].score | 0.9926742315292358 |
| keywords[0].display_name | Spurious relationship |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6269304156303406 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6210988759994507 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/trustworthiness |
| keywords[3].score | 0.5793471932411194 |
| keywords[3].display_name | Trustworthiness |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.5764192342758179 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.516816258430481 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.45804187655448914 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/simple |
| keywords[7].score | 0.42959412932395935 |
| keywords[7].display_name | Simple (philosophy) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.08285 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.08285 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.08285 |
| locations[1].id | doi:10.48550/arxiv.2211.08285 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.08285 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058624041 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9318-9417 |
| authorships[0].author.display_name | Misgina Tsighe Hagos |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hagos, Misgina Tsighe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031311803 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0095-9337 |
| authorships[1].author.display_name | Kathleen M. Curran |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Curran, Kathleen M. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5084251444 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2518-0274 |
| authorships[2].author.display_name | Brian Mac Namee |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mac Namee, Brian |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.08285 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identifying Spurious Correlations and Correcting them with an Explanation-based Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9927999973297119 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W3113091479, https://openalex.org/W2162899405, https://openalex.org/W941090075, https://openalex.org/W2044987316, https://openalex.org/W3134374554, https://openalex.org/W2237480245, https://openalex.org/W2075065631, https://openalex.org/W2519167559, https://openalex.org/W4288358396, https://openalex.org/W4386113923 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.08285 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.08285 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.08285 |
| primary_location.id | pmh:oai:arXiv.org:2211.08285 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.08285 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.08285 |
| publication_date | 2022-11-15 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 14, 19, 24, 36 |
| abstract_inverted_index.We | 22, 43, 59 |
| abstract_inverted_index.an | 64, 95 |
| abstract_inverted_index.at | 9 |
| abstract_inverted_index.by | 4, 35 |
| abstract_inverted_index.in | 50 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 12, 52 |
| abstract_inverted_index.on | 84 |
| abstract_inverted_index.to | 27 |
| abstract_inverted_index.we | 88 |
| abstract_inverted_index.and | 17, 47, 76 |
| abstract_inverted_index.for | 39 |
| abstract_inverted_index.the | 10, 56, 79, 90 |
| abstract_inverted_index.was | 82 |
| abstract_inverted_index.been | 33 |
| abstract_inverted_index.core | 11 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.made | 54 |
| abstract_inverted_index.show | 77 |
| abstract_inverted_index.that | 31, 68, 78 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.with | 71, 94 |
| abstract_inverted_index.apply | 44 |
| abstract_inverted_index.based | 97 |
| abstract_inverted_index.image | 40, 65 |
| abstract_inverted_index.model | 7, 16, 37, 81 |
| abstract_inverted_index.using | 55, 63 |
| abstract_inverted_index.images | 70 |
| abstract_inverted_index.method | 26 |
| abstract_inverted_index.model. | 21, 58 |
| abstract_inverted_index.remove | 89 |
| abstract_inverted_index.simple | 25 |
| abstract_inverted_index.changes | 49 |
| abstract_inverted_index.dataset | 67 |
| abstract_inverted_index.learned | 3, 34, 91 |
| abstract_inverted_index.monitor | 48 |
| abstract_inverted_index.present | 23 |
| abstract_inverted_index.regions | 75 |
| abstract_inverted_index.trained | 6, 15, 38, 57, 80 |
| abstract_inverted_index.approach | 62 |
| abstract_inverted_index.building | 18 |
| abstract_inverted_index.contains | 69 |
| abstract_inverted_index.identify | 28 |
| abstract_inverted_index.learning | 98 |
| abstract_inverted_index.refining | 13 |
| abstract_inverted_index.regions. | 86 |
| abstract_inverted_index.spurious | 1, 29, 74, 85, 92 |
| abstract_inverted_index.Moreover, | 87 |
| abstract_inverted_index.approach. | 99 |
| abstract_inverted_index.generated | 73 |
| abstract_inverted_index.problems. | 42 |
| abstract_inverted_index.Identifying | 0 |
| abstract_inverted_index.certainties | 51 |
| abstract_inverted_index.demonstrate | 60 |
| abstract_inverted_index.explanation | 96 |
| abstract_inverted_index.image-level | 45 |
| abstract_inverted_index.predictions | 53 |
| abstract_inverted_index.trustworthy | 20 |
| abstract_inverted_index.correlations | 2, 30, 93 |
| abstract_inverted_index.overdependent | 83 |
| abstract_inverted_index.perturbations | 46 |
| abstract_inverted_index.synthetically | 72 |
| abstract_inverted_index.classification | 41, 66 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |