Identifying Survival Subtypes of Esophageal Squamous Cell Carcinoma Patients: An Application of Deep Learning in Gene Expression Data Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5812/ijcm-145929
Background: Esophageal squamous cell carcinoma (ESCC) is one of the most lethal types of cancer. Late diagnosis significantly decreases patient survival rates. Objectives: The study aimed to identify survival groups for patients with ESCC and find predictive biomarkers of time-to-death from ESCC using state-of-the-art deep learning (DL) and machine learning algorithms. Methods: Expression profiles of 60 ESCC patients, along with their demographic and clinical variables, were downloaded from the GEO dataset. A DL autoencoder model was employed to extract lncRNA features. The univariate Cox proportional hazard (Cox-PH) model was used to select significant extracted features related to patient survival. Hierarchical clustering (HC) identified risk groups, followed by a decision trees algorithm which was used to identify lncRNA profiles. We used Python.3.7 and R.4.0.1 software. Results: Inputs of the autoencoder were 8,900 long noncoding RNAs (lncRNAs), of which 1000 features were extracted. Out of the features, 42 lncRNAs were significantly related to time-to-death using the Cox-PH model and used as input for clustering of patients into high and low-risk groups (P-value of log-rank test = 0.022). These groups were then labeled for supervised HC. The C5.0 algorithm achieved an overall accuracy of 0.929 on the test set and identified four hub lncRNAs associated with time-to-death. Conclusions: Novel discovered lncRNAs lnc-FAM84A-1, LINC01866, lnc-KCNE4-2 and lnc-NUDT12-4 implicated in the pathogenesis of death from ESCC. Our findings represent a significant advancement in understanding the role of lncRNAs on ESCC prognosis. Further research is necessary to confirm the potential and clinical application of these lncRNAs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5812/ijcm-145929
- https://brieflands.com/articles/ijcm-145929.pdf
- OA Status
- diamond
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402100455
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402100455Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5812/ijcm-145929Digital Object Identifier
- Title
-
Identifying Survival Subtypes of Esophageal Squamous Cell Carcinoma Patients: An Application of Deep Learning in Gene Expression Data AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-01Full publication date if available
- Authors
-
Zahra Kousehlou, Ebrahim Hajizadeh, Leili Tapak, Ahmad ShalbafList of authors in order
- Landing page
-
https://doi.org/10.5812/ijcm-145929Publisher landing page
- PDF URL
-
https://brieflands.com/articles/ijcm-145929.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://brieflands.com/articles/ijcm-145929.pdfDirect OA link when available
- Concepts
-
Esophageal squamous cell carcinoma, Basal cell, Gene expression, Gene, Medicine, Cancer research, Pathology, Carcinoma, Oncology, Biology, Internal medicine, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402100455 |
|---|---|
| doi | https://doi.org/10.5812/ijcm-145929 |
| ids.doi | https://doi.org/10.5812/ijcm-145929 |
| ids.openalex | https://openalex.org/W4402100455 |
| fwci | 0.0 |
| type | article |
| title | Identifying Survival Subtypes of Esophageal Squamous Cell Carcinoma Patients: An Application of Deep Learning in Gene Expression Data Analysis |
| biblio.issue | 1 |
| biblio.volume | 17 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10619 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Esophageal Cancer Research and Treatment |
| topics[1].id | https://openalex.org/T11297 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9822999835014343 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Ferroptosis and cancer prognosis |
| topics[2].id | https://openalex.org/T11482 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.968500018119812 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | RNA modifications and cancer |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2994415158 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6483486890792847 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q372701 |
| concepts[0].display_name | Esophageal squamous cell carcinoma |
| concepts[1].id | https://openalex.org/C3019992690 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5518381595611572 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q92767510 |
| concepts[1].display_name | Basal cell |
| concepts[2].id | https://openalex.org/C150194340 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5058383941650391 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[2].display_name | Gene expression |
| concepts[3].id | https://openalex.org/C104317684 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4503619968891144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[3].display_name | Gene |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.422836035490036 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C502942594 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4199942946434021 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3421914 |
| concepts[5].display_name | Cancer research |
| concepts[6].id | https://openalex.org/C142724271 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4154464900493622 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[6].display_name | Pathology |
| concepts[7].id | https://openalex.org/C2777546739 |
| concepts[7].level | 2 |
| concepts[7].score | 0.40577638149261475 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33525 |
| concepts[7].display_name | Carcinoma |
| concepts[8].id | https://openalex.org/C143998085 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39275026321411133 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q162555 |
| concepts[8].display_name | Oncology |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3666519820690155 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3407880663871765 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C54355233 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09562823176383972 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[11].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/esophageal-squamous-cell-carcinoma |
| keywords[0].score | 0.6483486890792847 |
| keywords[0].display_name | Esophageal squamous cell carcinoma |
| keywords[1].id | https://openalex.org/keywords/basal-cell |
| keywords[1].score | 0.5518381595611572 |
| keywords[1].display_name | Basal cell |
| keywords[2].id | https://openalex.org/keywords/gene-expression |
| keywords[2].score | 0.5058383941650391 |
| keywords[2].display_name | Gene expression |
| keywords[3].id | https://openalex.org/keywords/gene |
| keywords[3].score | 0.4503619968891144 |
| keywords[3].display_name | Gene |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.422836035490036 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/cancer-research |
| keywords[5].score | 0.4199942946434021 |
| keywords[5].display_name | Cancer research |
| keywords[6].id | https://openalex.org/keywords/pathology |
| keywords[6].score | 0.4154464900493622 |
| keywords[6].display_name | Pathology |
| keywords[7].id | https://openalex.org/keywords/carcinoma |
| keywords[7].score | 0.40577638149261475 |
| keywords[7].display_name | Carcinoma |
| keywords[8].id | https://openalex.org/keywords/oncology |
| keywords[8].score | 0.39275026321411133 |
| keywords[8].display_name | Oncology |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.3666519820690155 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.3407880663871765 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/genetics |
| keywords[11].score | 0.09562823176383972 |
| keywords[11].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.5812/ijcm-145929 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210176134 |
| locations[0].source.issn | 2538-4422, 2538-497X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2538-4422 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Cancer Management |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://brieflands.com/articles/ijcm-145929.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Cancer Management |
| locations[0].landing_page_url | https://doi.org/10.5812/ijcm-145929 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5013094867 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4807-4813 |
| authorships[0].author.display_name | Zahra Kousehlou |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1516879 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I1516879 |
| authorships[0].institutions[0].ror | https://ror.org/03mwgfy56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1516879 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | Tarbiat Modares University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zahra Kousehlou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran |
| authorships[1].author.id | https://openalex.org/A5049315467 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7863-4837 |
| authorships[1].author.display_name | Ebrahim Hajizadeh |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1516879 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I1516879 |
| authorships[1].institutions[0].ror | https://ror.org/03mwgfy56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1516879 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Tarbiat Modares University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ebrahim HajiZadeh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran |
| authorships[2].author.id | https://openalex.org/A5014085861 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4378-3143 |
| authorships[2].author.display_name | Leili Tapak |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I112312016 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran |
| authorships[2].institutions[0].id | https://openalex.org/I112312016 |
| authorships[2].institutions[0].ror | https://ror.org/02ekfbp48 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I112312016 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | Hamedan University of Medical Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Leili Tapak |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran |
| authorships[3].author.id | https://openalex.org/A5058304766 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1595-7281 |
| authorships[3].author.display_name | Ahmad Shalbaf |
| authorships[3].countries | IR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I58048189 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran |
| authorships[3].institutions[0].id | https://openalex.org/I58048189 |
| authorships[3].institutions[0].ror | https://ror.org/034m2b326 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I58048189 |
| authorships[3].institutions[0].country_code | IR |
| authorships[3].institutions[0].display_name | Shahid Beheshti University of Medical Sciences |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ahmad Shalbaf |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://brieflands.com/articles/ijcm-145929.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Identifying Survival Subtypes of Esophageal Squamous Cell Carcinoma Patients: An Application of Deep Learning in Gene Expression Data Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10619 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Esophageal Cancer Research and Treatment |
| related_works | https://openalex.org/W4386779482, https://openalex.org/W4386779606, https://openalex.org/W4381488184, https://openalex.org/W4381487992, https://openalex.org/W4381487770, https://openalex.org/W4386779486, https://openalex.org/W4392406826, https://openalex.org/W4386779206, https://openalex.org/W2906374699, https://openalex.org/W4386779623 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5812/ijcm-145929 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210176134 |
| best_oa_location.source.issn | 2538-4422, 2538-497X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2538-4422 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Cancer Management |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://brieflands.com/articles/ijcm-145929.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Cancer Management |
| best_oa_location.landing_page_url | https://doi.org/10.5812/ijcm-145929 |
| primary_location.id | doi:10.5812/ijcm-145929 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210176134 |
| primary_location.source.issn | 2538-4422, 2538-497X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2538-4422 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Cancer Management |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://brieflands.com/articles/ijcm-145929.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Cancer Management |
| primary_location.landing_page_url | https://doi.org/10.5812/ijcm-145929 |
| publication_date | 2024-09-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3128646645, https://openalex.org/W2889646458, https://openalex.org/W4284706310, https://openalex.org/W2032665998, https://openalex.org/W3089269132, https://openalex.org/W2546115298, https://openalex.org/W2946961666, https://openalex.org/W2913470918, https://openalex.org/W2620140547, https://openalex.org/W2951209146, https://openalex.org/W4300862254, https://openalex.org/W4310066656, https://openalex.org/W2892587974, https://openalex.org/W3093258501, https://openalex.org/W3097702517, https://openalex.org/W4322421610, https://openalex.org/W2155542219, https://openalex.org/W3147894994, https://openalex.org/W2062567955, https://openalex.org/W2946471705, https://openalex.org/W2373555655, https://openalex.org/W2910830977, https://openalex.org/W3179319526, https://openalex.org/W4318542589, https://openalex.org/W3029996417, https://openalex.org/W1975029438, https://openalex.org/W2137172065, https://openalex.org/W2274129724, https://openalex.org/W2213098782, https://openalex.org/W1918772430, https://openalex.org/W2740174051 |
| referenced_works_count | 31 |
| abstract_inverted_index.= | 173 |
| abstract_inverted_index.A | 71 |
| abstract_inverted_index.a | 107, 224 |
| abstract_inverted_index.42 | 145 |
| abstract_inverted_index.60 | 55 |
| abstract_inverted_index.DL | 72 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.an | 187 |
| abstract_inverted_index.as | 158 |
| abstract_inverted_index.by | 106 |
| abstract_inverted_index.in | 214, 227 |
| abstract_inverted_index.is | 6, 238 |
| abstract_inverted_index.of | 8, 13, 38, 54, 126, 135, 142, 162, 170, 190, 217, 231, 247 |
| abstract_inverted_index.on | 192, 233 |
| abstract_inverted_index.to | 26, 77, 90, 96, 114, 150, 240 |
| abstract_inverted_index.Cox | 83 |
| abstract_inverted_index.GEO | 69 |
| abstract_inverted_index.HC. | 182 |
| abstract_inverted_index.Our | 221 |
| abstract_inverted_index.Out | 141 |
| abstract_inverted_index.The | 23, 81, 183 |
| abstract_inverted_index.and | 34, 47, 62, 121, 156, 166, 196, 211, 244 |
| abstract_inverted_index.for | 30, 160, 180 |
| abstract_inverted_index.hub | 199 |
| abstract_inverted_index.one | 7 |
| abstract_inverted_index.set | 195 |
| abstract_inverted_index.the | 9, 68, 127, 143, 153, 193, 215, 229, 242 |
| abstract_inverted_index.was | 75, 88, 112 |
| abstract_inverted_index.(DL) | 46 |
| abstract_inverted_index.(HC) | 101 |
| abstract_inverted_index.1000 | 137 |
| abstract_inverted_index.C5.0 | 184 |
| abstract_inverted_index.ESCC | 33, 41, 56, 234 |
| abstract_inverted_index.Late | 15 |
| abstract_inverted_index.RNAs | 133 |
| abstract_inverted_index.cell | 3 |
| abstract_inverted_index.deep | 44 |
| abstract_inverted_index.find | 35 |
| abstract_inverted_index.four | 198 |
| abstract_inverted_index.from | 40, 67, 219 |
| abstract_inverted_index.high | 165 |
| abstract_inverted_index.into | 164 |
| abstract_inverted_index.long | 131 |
| abstract_inverted_index.most | 10 |
| abstract_inverted_index.risk | 103 |
| abstract_inverted_index.role | 230 |
| abstract_inverted_index.test | 172, 194 |
| abstract_inverted_index.then | 178 |
| abstract_inverted_index.used | 89, 113, 119, 157 |
| abstract_inverted_index.were | 65, 129, 139, 147, 177 |
| abstract_inverted_index.with | 32, 59, 202 |
| abstract_inverted_index.0.929 | 191 |
| abstract_inverted_index.8,900 | 130 |
| abstract_inverted_index.ESCC. | 220 |
| abstract_inverted_index.Novel | 205 |
| abstract_inverted_index.These | 175 |
| abstract_inverted_index.aimed | 25 |
| abstract_inverted_index.along | 58 |
| abstract_inverted_index.death | 218 |
| abstract_inverted_index.input | 159 |
| abstract_inverted_index.model | 74, 87, 155 |
| abstract_inverted_index.study | 24 |
| abstract_inverted_index.their | 60 |
| abstract_inverted_index.these | 248 |
| abstract_inverted_index.trees | 109 |
| abstract_inverted_index.types | 12 |
| abstract_inverted_index.using | 42, 152 |
| abstract_inverted_index.which | 111, 136 |
| abstract_inverted_index.(ESCC) | 5 |
| abstract_inverted_index.Cox-PH | 154 |
| abstract_inverted_index.Inputs | 125 |
| abstract_inverted_index.groups | 29, 168, 176 |
| abstract_inverted_index.hazard | 85 |
| abstract_inverted_index.lethal | 11 |
| abstract_inverted_index.lncRNA | 79, 116 |
| abstract_inverted_index.rates. | 21 |
| abstract_inverted_index.select | 91 |
| abstract_inverted_index.0.022). | 174 |
| abstract_inverted_index.Further | 236 |
| abstract_inverted_index.R.4.0.1 | 122 |
| abstract_inverted_index.cancer. | 14 |
| abstract_inverted_index.confirm | 241 |
| abstract_inverted_index.extract | 78 |
| abstract_inverted_index.groups, | 104 |
| abstract_inverted_index.labeled | 179 |
| abstract_inverted_index.lncRNAs | 146, 200, 207, 232 |
| abstract_inverted_index.machine | 48 |
| abstract_inverted_index.overall | 188 |
| abstract_inverted_index.patient | 19, 97 |
| abstract_inverted_index.related | 95, 149 |
| abstract_inverted_index.(Cox-PH) | 86 |
| abstract_inverted_index.(P-value | 169 |
| abstract_inverted_index.Methods: | 51 |
| abstract_inverted_index.Results: | 124 |
| abstract_inverted_index.accuracy | 189 |
| abstract_inverted_index.achieved | 186 |
| abstract_inverted_index.clinical | 63, 245 |
| abstract_inverted_index.dataset. | 70 |
| abstract_inverted_index.decision | 108 |
| abstract_inverted_index.employed | 76 |
| abstract_inverted_index.features | 94, 138 |
| abstract_inverted_index.findings | 222 |
| abstract_inverted_index.followed | 105 |
| abstract_inverted_index.identify | 27, 115 |
| abstract_inverted_index.learning | 45, 49 |
| abstract_inverted_index.lncRNAs. | 249 |
| abstract_inverted_index.log-rank | 171 |
| abstract_inverted_index.low-risk | 167 |
| abstract_inverted_index.patients | 31, 163 |
| abstract_inverted_index.profiles | 53 |
| abstract_inverted_index.research | 237 |
| abstract_inverted_index.squamous | 2 |
| abstract_inverted_index.survival | 20, 28 |
| abstract_inverted_index.algorithm | 110, 185 |
| abstract_inverted_index.carcinoma | 4 |
| abstract_inverted_index.decreases | 18 |
| abstract_inverted_index.diagnosis | 16 |
| abstract_inverted_index.extracted | 93 |
| abstract_inverted_index.features, | 144 |
| abstract_inverted_index.features. | 80 |
| abstract_inverted_index.necessary | 239 |
| abstract_inverted_index.noncoding | 132 |
| abstract_inverted_index.patients, | 57 |
| abstract_inverted_index.potential | 243 |
| abstract_inverted_index.profiles. | 117 |
| abstract_inverted_index.represent | 223 |
| abstract_inverted_index.software. | 123 |
| abstract_inverted_index.survival. | 98 |
| abstract_inverted_index.(lncRNAs), | 134 |
| abstract_inverted_index.Esophageal | 1 |
| abstract_inverted_index.Expression | 52 |
| abstract_inverted_index.LINC01866, | 209 |
| abstract_inverted_index.Python.3.7 | 120 |
| abstract_inverted_index.associated | 201 |
| abstract_inverted_index.biomarkers | 37 |
| abstract_inverted_index.clustering | 100, 161 |
| abstract_inverted_index.discovered | 206 |
| abstract_inverted_index.downloaded | 66 |
| abstract_inverted_index.extracted. | 140 |
| abstract_inverted_index.identified | 102, 197 |
| abstract_inverted_index.implicated | 213 |
| abstract_inverted_index.predictive | 36 |
| abstract_inverted_index.prognosis. | 235 |
| abstract_inverted_index.supervised | 181 |
| abstract_inverted_index.univariate | 82 |
| abstract_inverted_index.variables, | 64 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Objectives: | 22 |
| abstract_inverted_index.advancement | 226 |
| abstract_inverted_index.algorithms. | 50 |
| abstract_inverted_index.application | 246 |
| abstract_inverted_index.autoencoder | 73, 128 |
| abstract_inverted_index.demographic | 61 |
| abstract_inverted_index.lnc-KCNE4-2 | 210 |
| abstract_inverted_index.significant | 92, 225 |
| abstract_inverted_index.Conclusions: | 204 |
| abstract_inverted_index.Hierarchical | 99 |
| abstract_inverted_index.lnc-NUDT12-4 | 212 |
| abstract_inverted_index.pathogenesis | 216 |
| abstract_inverted_index.proportional | 84 |
| abstract_inverted_index.lnc-FAM84A-1, | 208 |
| abstract_inverted_index.significantly | 17, 148 |
| abstract_inverted_index.time-to-death | 39, 151 |
| abstract_inverted_index.understanding | 228 |
| abstract_inverted_index.time-to-death. | 203 |
| abstract_inverted_index.state-of-the-art | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.29471186 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |