IIITD-20K: Dense captioning for Text-Image ReID Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.04497
Text-to-Image (T2I) ReID has attracted a lot of attention in the recent past. CUHK-PEDES, RSTPReid and ICFG-PEDES are the three available benchmarks to evaluate T2I ReID methods. RSTPReid and ICFG-PEDES comprise of identities from MSMT17 but due to limited number of unique persons, the diversity is limited. On the other hand, CUHK-PEDES comprises of 13,003 identities but has relatively shorter text description on average. Further, these datasets are captured in a restricted environment with limited number of cameras. In order to further diversify the identities and provide dense captions, we propose a novel dataset called IIITD-20K. IIITD-20K comprises of 20,000 unique identities captured in the wild and provides a rich dataset for text-to-image ReID. With a minimum of 26 words for a description, each image is densely captioned. We further synthetically generate images and fine-grained captions using Stable-diffusion and BLIP models trained on our dataset. We perform elaborate experiments using state-of-art text-to-image ReID models and vision-language pre-trained models and present a comprehensive analysis of the dataset. Our experiments also reveal that synthetically generated data leads to a substantial performance improvement in both same dataset as well as cross dataset settings. Our dataset is available at https://bit.ly/3pkA3Rj.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.04497
- https://arxiv.org/pdf/2305.04497
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4375958880
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4375958880Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.04497Digital Object Identifier
- Title
-
IIITD-20K: Dense captioning for Text-Image ReIDWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-08Full publication date if available
- Authors
-
A V Subramanyam, N. Sundararajan, Vibhu Dubey, Brejesh LallList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.04497Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.04497Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.04497Direct OA link when available
- Concepts
-
Closed captioning, Computer science, Image (mathematics), Artificial intelligence, Pattern recognition (psychology), Natural language processing, Information retrieval, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4375958880 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.04497 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.04497 |
| ids.openalex | https://openalex.org/W4375958880 |
| fwci | |
| type | preprint |
| title | IIITD-20K: Dense captioning for Text-Image ReID |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9937999844551086 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10601 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9896000027656555 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Handwritten Text Recognition Techniques |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9677000045776367 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C157657479 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9063925743103027 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2367247 |
| concepts[0].display_name | Closed captioning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8210544586181641 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C115961682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6447674036026001 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[2].display_name | Image (mathematics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5908806324005127 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.408699631690979 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3703334927558899 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C23123220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34005382657051086 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[6].display_name | Information retrieval |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3238178491592407 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/closed-captioning |
| keywords[0].score | 0.9063925743103027 |
| keywords[0].display_name | Closed captioning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8210544586181641 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/image |
| keywords[2].score | 0.6447674036026001 |
| keywords[2].display_name | Image (mathematics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5908806324005127 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.408699631690979 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.3703334927558899 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/information-retrieval |
| keywords[6].score | 0.34005382657051086 |
| keywords[6].display_name | Information retrieval |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3238178491592407 |
| keywords[7].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.04497 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.04497 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.04497 |
| locations[1].id | doi:10.48550/arxiv.2305.04497 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.04497 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5085785393 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8873-4644 |
| authorships[0].author.display_name | A V Subramanyam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Subramanyam, A V |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112589166 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | N. Sundararajan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sundararajan, Niranjan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103089653 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-1599-228X |
| authorships[2].author.display_name | Vibhu Dubey |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dubey, Vibhu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5066116024 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2677-3071 |
| authorships[3].author.display_name | Brejesh Lall |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lall, Brejesh |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.04497 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | IIITD-20K: Dense captioning for Text-Image ReID |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9937999844551086 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W4210416330, https://openalex.org/W3164229987, https://openalex.org/W3215212336, https://openalex.org/W4290852288, https://openalex.org/W3217388757, https://openalex.org/W3122720459, https://openalex.org/W4298897568, https://openalex.org/W4289422896, https://openalex.org/W1938708284, https://openalex.org/W4380190185 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.04497 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.04497 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.04497 |
| primary_location.id | pmh:oai:arXiv.org:2305.04497 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.04497 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.04497 |
| publication_date | 2023-05-08 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 70, 91, 108, 115, 121, 160, 176 |
| abstract_inverted_index.26 | 118 |
| abstract_inverted_index.In | 78 |
| abstract_inverted_index.On | 47 |
| abstract_inverted_index.We | 128, 145 |
| abstract_inverted_index.as | 184, 186 |
| abstract_inverted_index.at | 194 |
| abstract_inverted_index.in | 9, 69, 103, 180 |
| abstract_inverted_index.is | 45, 125, 192 |
| abstract_inverted_index.of | 7, 31, 40, 53, 76, 98, 117, 163 |
| abstract_inverted_index.on | 62, 142 |
| abstract_inverted_index.to | 22, 37, 80, 175 |
| abstract_inverted_index.we | 89 |
| abstract_inverted_index.Our | 166, 190 |
| abstract_inverted_index.T2I | 24 |
| abstract_inverted_index.and | 15, 28, 85, 106, 133, 138, 154, 158 |
| abstract_inverted_index.are | 17, 67 |
| abstract_inverted_index.but | 35, 56 |
| abstract_inverted_index.due | 36 |
| abstract_inverted_index.for | 111, 120 |
| abstract_inverted_index.has | 3, 57 |
| abstract_inverted_index.lot | 6 |
| abstract_inverted_index.our | 143 |
| abstract_inverted_index.the | 10, 18, 43, 48, 83, 104, 164 |
| abstract_inverted_index.BLIP | 139 |
| abstract_inverted_index.ReID | 2, 25, 152 |
| abstract_inverted_index.With | 114 |
| abstract_inverted_index.also | 168 |
| abstract_inverted_index.both | 181 |
| abstract_inverted_index.data | 173 |
| abstract_inverted_index.each | 123 |
| abstract_inverted_index.from | 33 |
| abstract_inverted_index.rich | 109 |
| abstract_inverted_index.same | 182 |
| abstract_inverted_index.text | 60 |
| abstract_inverted_index.that | 170 |
| abstract_inverted_index.well | 185 |
| abstract_inverted_index.wild | 105 |
| abstract_inverted_index.with | 73 |
| abstract_inverted_index.(T2I) | 1 |
| abstract_inverted_index.ReID. | 113 |
| abstract_inverted_index.cross | 187 |
| abstract_inverted_index.dense | 87 |
| abstract_inverted_index.hand, | 50 |
| abstract_inverted_index.image | 124 |
| abstract_inverted_index.leads | 174 |
| abstract_inverted_index.novel | 92 |
| abstract_inverted_index.order | 79 |
| abstract_inverted_index.other | 49 |
| abstract_inverted_index.past. | 12 |
| abstract_inverted_index.these | 65 |
| abstract_inverted_index.three | 19 |
| abstract_inverted_index.using | 136, 149 |
| abstract_inverted_index.words | 119 |
| abstract_inverted_index.13,003 | 54 |
| abstract_inverted_index.20,000 | 99 |
| abstract_inverted_index.MSMT17 | 34 |
| abstract_inverted_index.called | 94 |
| abstract_inverted_index.images | 132 |
| abstract_inverted_index.models | 140, 153, 157 |
| abstract_inverted_index.number | 39, 75 |
| abstract_inverted_index.recent | 11 |
| abstract_inverted_index.reveal | 169 |
| abstract_inverted_index.unique | 41, 100 |
| abstract_inverted_index.dataset | 93, 110, 183, 188, 191 |
| abstract_inverted_index.densely | 126 |
| abstract_inverted_index.further | 81, 129 |
| abstract_inverted_index.limited | 38, 74 |
| abstract_inverted_index.minimum | 116 |
| abstract_inverted_index.perform | 146 |
| abstract_inverted_index.present | 159 |
| abstract_inverted_index.propose | 90 |
| abstract_inverted_index.provide | 86 |
| abstract_inverted_index.shorter | 59 |
| abstract_inverted_index.trained | 141 |
| abstract_inverted_index.Further, | 64 |
| abstract_inverted_index.RSTPReid | 14, 27 |
| abstract_inverted_index.analysis | 162 |
| abstract_inverted_index.average. | 63 |
| abstract_inverted_index.cameras. | 77 |
| abstract_inverted_index.captions | 135 |
| abstract_inverted_index.captured | 68, 102 |
| abstract_inverted_index.comprise | 30 |
| abstract_inverted_index.dataset. | 144, 165 |
| abstract_inverted_index.datasets | 66 |
| abstract_inverted_index.evaluate | 23 |
| abstract_inverted_index.generate | 131 |
| abstract_inverted_index.limited. | 46 |
| abstract_inverted_index.methods. | 26 |
| abstract_inverted_index.persons, | 42 |
| abstract_inverted_index.provides | 107 |
| abstract_inverted_index.IIITD-20K | 96 |
| abstract_inverted_index.attention | 8 |
| abstract_inverted_index.attracted | 4 |
| abstract_inverted_index.available | 20, 193 |
| abstract_inverted_index.captions, | 88 |
| abstract_inverted_index.comprises | 52, 97 |
| abstract_inverted_index.diversify | 82 |
| abstract_inverted_index.diversity | 44 |
| abstract_inverted_index.elaborate | 147 |
| abstract_inverted_index.generated | 172 |
| abstract_inverted_index.settings. | 189 |
| abstract_inverted_index.CUHK-PEDES | 51 |
| abstract_inverted_index.ICFG-PEDES | 16, 29 |
| abstract_inverted_index.IIITD-20K. | 95 |
| abstract_inverted_index.benchmarks | 21 |
| abstract_inverted_index.captioned. | 127 |
| abstract_inverted_index.identities | 32, 55, 84, 101 |
| abstract_inverted_index.relatively | 58 |
| abstract_inverted_index.restricted | 71 |
| abstract_inverted_index.CUHK-PEDES, | 13 |
| abstract_inverted_index.description | 61 |
| abstract_inverted_index.environment | 72 |
| abstract_inverted_index.experiments | 148, 167 |
| abstract_inverted_index.improvement | 179 |
| abstract_inverted_index.performance | 178 |
| abstract_inverted_index.pre-trained | 156 |
| abstract_inverted_index.substantial | 177 |
| abstract_inverted_index.description, | 122 |
| abstract_inverted_index.fine-grained | 134 |
| abstract_inverted_index.state-of-art | 150 |
| abstract_inverted_index.Text-to-Image | 0 |
| abstract_inverted_index.comprehensive | 161 |
| abstract_inverted_index.synthetically | 130, 171 |
| abstract_inverted_index.text-to-image | 112, 151 |
| abstract_inverted_index.vision-language | 155 |
| abstract_inverted_index.Stable-diffusion | 137 |
| abstract_inverted_index.https://bit.ly/3pkA3Rj. | 195 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |