IITK at SemEval-2024 Task 4: Hierarchical Embeddings for Detection of Persuasion Techniques in Memes Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.04520
Memes are one of the most popular types of content used in an online disinformation campaign. They are primarily effective on social media platforms since they can easily reach many users. Memes in a disinformation campaign achieve their goal of influencing the users through several rhetorical and psychological techniques, such as causal oversimplification, name-calling, and smear. The SemEval 2024 Task 4 \textit{Multilingual Detection of Persuasion Technique in Memes} on identifying such techniques in the memes is divided across three sub-tasks: ($\mathbf{1}$) Hierarchical multi-label classification using only textual content of the meme, ($\mathbf{2}$) Hierarchical multi-label classification using both, textual and visual content of the meme and ($\mathbf{3}$) Binary classification of whether the meme contains a persuasion technique or not using it's textual and visual content. This paper proposes an ensemble of Class Definition Prediction (CDP) and hyperbolic embeddings-based approaches for this task. We enhance meme classification accuracy and comprehensiveness by integrating HypEmo's hierarchical label embeddings (Chen et al., 2023) and a multi-task learning framework for emotion prediction. We achieve a hierarchical F1-score of 0.60, 0.67, and 0.48 on the respective sub-tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.04520
- https://arxiv.org/pdf/2404.04520
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394700687
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394700687Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.04520Digital Object Identifier
- Title
-
IITK at SemEval-2024 Task 4: Hierarchical Embeddings for Detection of Persuasion Techniques in MemesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-06Full publication date if available
- Authors
-
Shreenaga Chikoti, Shrey Mehta, Ashutosh ModiList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.04520Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.04520Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.04520Direct OA link when available
- Concepts
-
SemEval, Persuasion, Task (project management), Computer science, Natural language processing, Artificial intelligence, Psychology, Engineering, Social psychology, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394700687 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.04520 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.04520 |
| ids.openalex | https://openalex.org/W4394700687 |
| fwci | |
| type | preprint |
| title | IITK at SemEval-2024 Task 4: Hierarchical Embeddings for Detection of Persuasion Techniques in Memes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11147 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9930999875068665 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3312 |
| topics[0].subfield.display_name | Sociology and Political Science |
| topics[0].display_name | Misinformation and Its Impacts |
| topics[1].id | https://openalex.org/T11197 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9805999994277954 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Digital Games and Media |
| topics[2].id | https://openalex.org/T12262 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9787999987602234 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Hate Speech and Cyberbullying Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C44572571 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8297569155693054 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7448970 |
| concepts[0].display_name | SemEval |
| concepts[1].id | https://openalex.org/C2781310500 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8015038967132568 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1231428 |
| concepts[1].display_name | Persuasion |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7470908761024475 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6363083124160767 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4117969870567322 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4029105305671692 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.18819037079811096 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0632285475730896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C77805123 |
| concepts[8].level | 1 |
| concepts[8].score | 0.06109479069709778 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[8].display_name | Social psychology |
| concepts[9].id | https://openalex.org/C201995342 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[9].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/semeval |
| keywords[0].score | 0.8297569155693054 |
| keywords[0].display_name | SemEval |
| keywords[1].id | https://openalex.org/keywords/persuasion |
| keywords[1].score | 0.8015038967132568 |
| keywords[1].display_name | Persuasion |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.7470908761024475 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6363083124160767 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.4117969870567322 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4029105305671692 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.18819037079811096 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.0632285475730896 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/social-psychology |
| keywords[8].score | 0.06109479069709778 |
| keywords[8].display_name | Social psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.04520 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.04520 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.04520 |
| locations[1].id | doi:10.48550/arxiv.2404.04520 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.04520 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5093900187 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shreenaga Chikoti |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chikoti, Shreenaga |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102646911 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shrey Mehta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mehta, Shrey |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076043215 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0962-8350 |
| authorships[2].author.display_name | Ashutosh Modi |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Modi, Ashutosh |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.04520 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-11T00:00:00 |
| display_name | IITK at SemEval-2024 Task 4: Hierarchical Embeddings for Detection of Persuasion Techniques in Memes |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11147 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9930999875068665 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3312 |
| primary_topic.subfield.display_name | Sociology and Political Science |
| primary_topic.display_name | Misinformation and Its Impacts |
| related_works | https://openalex.org/W1988325893, https://openalex.org/W2751613946, https://openalex.org/W4287887314, https://openalex.org/W4221151255, https://openalex.org/W2955722679, https://openalex.org/W2803726945, https://openalex.org/W4291593823, https://openalex.org/W2805641541, https://openalex.org/W4287888941, https://openalex.org/W2963463993 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.04520 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.04520 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.04520 |
| primary_location.id | pmh:oai:arXiv.org:2404.04520 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.04520 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.04520 |
| publication_date | 2024-04-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 60 |
| abstract_inverted_index.a | 33, 113, 159, 168 |
| abstract_inverted_index.We | 141, 166 |
| abstract_inverted_index.an | 12, 127 |
| abstract_inverted_index.as | 50 |
| abstract_inverted_index.by | 148 |
| abstract_inverted_index.et | 155 |
| abstract_inverted_index.in | 11, 32, 66, 72 |
| abstract_inverted_index.is | 75 |
| abstract_inverted_index.of | 3, 8, 39, 63, 88, 101, 108, 129, 171 |
| abstract_inverted_index.on | 20, 68, 176 |
| abstract_inverted_index.or | 116 |
| abstract_inverted_index.The | 56 |
| abstract_inverted_index.and | 46, 54, 98, 104, 121, 134, 146, 158, 174 |
| abstract_inverted_index.are | 1, 17 |
| abstract_inverted_index.can | 26 |
| abstract_inverted_index.for | 138, 163 |
| abstract_inverted_index.not | 117 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.the | 4, 41, 73, 89, 102, 110, 177 |
| abstract_inverted_index.0.48 | 175 |
| abstract_inverted_index.2024 | 58 |
| abstract_inverted_index.Task | 59 |
| abstract_inverted_index.They | 16 |
| abstract_inverted_index.This | 124 |
| abstract_inverted_index.al., | 156 |
| abstract_inverted_index.goal | 38 |
| abstract_inverted_index.it's | 119 |
| abstract_inverted_index.many | 29 |
| abstract_inverted_index.meme | 103, 111, 143 |
| abstract_inverted_index.most | 5 |
| abstract_inverted_index.only | 85 |
| abstract_inverted_index.such | 49, 70 |
| abstract_inverted_index.they | 25 |
| abstract_inverted_index.this | 139 |
| abstract_inverted_index.used | 10 |
| abstract_inverted_index.(CDP) | 133 |
| abstract_inverted_index.(Chen | 154 |
| abstract_inverted_index.0.60, | 172 |
| abstract_inverted_index.0.67, | 173 |
| abstract_inverted_index.2023) | 157 |
| abstract_inverted_index.Class | 130 |
| abstract_inverted_index.Memes | 0, 31 |
| abstract_inverted_index.both, | 96 |
| abstract_inverted_index.label | 152 |
| abstract_inverted_index.media | 22 |
| abstract_inverted_index.meme, | 90 |
| abstract_inverted_index.memes | 74 |
| abstract_inverted_index.paper | 125 |
| abstract_inverted_index.reach | 28 |
| abstract_inverted_index.since | 24 |
| abstract_inverted_index.task. | 140 |
| abstract_inverted_index.their | 37 |
| abstract_inverted_index.three | 78 |
| abstract_inverted_index.types | 7 |
| abstract_inverted_index.users | 42 |
| abstract_inverted_index.using | 84, 95, 118 |
| abstract_inverted_index.Binary | 106 |
| abstract_inverted_index.Memes} | 67 |
| abstract_inverted_index.across | 77 |
| abstract_inverted_index.causal | 51 |
| abstract_inverted_index.easily | 27 |
| abstract_inverted_index.online | 13 |
| abstract_inverted_index.smear. | 55 |
| abstract_inverted_index.social | 21 |
| abstract_inverted_index.users. | 30 |
| abstract_inverted_index.visual | 99, 122 |
| abstract_inverted_index.SemEval | 57 |
| abstract_inverted_index.achieve | 36, 167 |
| abstract_inverted_index.content | 9, 87, 100 |
| abstract_inverted_index.divided | 76 |
| abstract_inverted_index.emotion | 164 |
| abstract_inverted_index.enhance | 142 |
| abstract_inverted_index.popular | 6 |
| abstract_inverted_index.several | 44 |
| abstract_inverted_index.textual | 86, 97, 120 |
| abstract_inverted_index.through | 43 |
| abstract_inverted_index.whether | 109 |
| abstract_inverted_index.F1-score | 170 |
| abstract_inverted_index.HypEmo's | 150 |
| abstract_inverted_index.accuracy | 145 |
| abstract_inverted_index.campaign | 35 |
| abstract_inverted_index.contains | 112 |
| abstract_inverted_index.content. | 123 |
| abstract_inverted_index.ensemble | 128 |
| abstract_inverted_index.learning | 161 |
| abstract_inverted_index.proposes | 126 |
| abstract_inverted_index.Detection | 62 |
| abstract_inverted_index.Technique | 65 |
| abstract_inverted_index.campaign. | 15 |
| abstract_inverted_index.effective | 19 |
| abstract_inverted_index.framework | 162 |
| abstract_inverted_index.platforms | 23 |
| abstract_inverted_index.primarily | 18 |
| abstract_inverted_index.technique | 115 |
| abstract_inverted_index.Definition | 131 |
| abstract_inverted_index.Persuasion | 64 |
| abstract_inverted_index.Prediction | 132 |
| abstract_inverted_index.approaches | 137 |
| abstract_inverted_index.embeddings | 153 |
| abstract_inverted_index.hyperbolic | 135 |
| abstract_inverted_index.multi-task | 160 |
| abstract_inverted_index.persuasion | 114 |
| abstract_inverted_index.respective | 178 |
| abstract_inverted_index.rhetorical | 45 |
| abstract_inverted_index.sub-tasks. | 179 |
| abstract_inverted_index.sub-tasks: | 79 |
| abstract_inverted_index.techniques | 71 |
| abstract_inverted_index.identifying | 69 |
| abstract_inverted_index.influencing | 40 |
| abstract_inverted_index.integrating | 149 |
| abstract_inverted_index.multi-label | 82, 93 |
| abstract_inverted_index.prediction. | 165 |
| abstract_inverted_index.techniques, | 48 |
| abstract_inverted_index.Hierarchical | 81, 92 |
| abstract_inverted_index.hierarchical | 151, 169 |
| abstract_inverted_index.name-calling, | 53 |
| abstract_inverted_index.psychological | 47 |
| abstract_inverted_index.($\mathbf{1}$) | 80 |
| abstract_inverted_index.($\mathbf{2}$) | 91 |
| abstract_inverted_index.($\mathbf{3}$) | 105 |
| abstract_inverted_index.classification | 83, 94, 107, 144 |
| abstract_inverted_index.disinformation | 14, 34 |
| abstract_inverted_index.embeddings-based | 136 |
| abstract_inverted_index.comprehensiveness | 147 |
| abstract_inverted_index.oversimplification, | 52 |
| abstract_inverted_index.\textit{Multilingual | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |