Illuminating Spaces: Deep Reinforcement Learning and Laser-Wall Partitioning for Architectural Layout Generation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.04407
Space layout design (SLD), occurring in the early stages of the design process, nonetheless influences both the functionality and aesthetics of the ultimate architectural outcome. The complexity of SLD necessitates innovative approaches to efficiently explore vast solution spaces. While image-based generative AI has emerged as a potential solution, they often rely on pixel-based space composition methods that lack intuitive representation of architectural processes. This paper leverages deep Reinforcement Learning (RL), as it offers a procedural approach that intuitively mimics the process of human designers. Effectively using RL for SLD requires an explorative space composing method to generate desirable design solutions. We introduce "laser-wall", a novel space partitioning method that conceptualizes walls as emitters of imaginary light beams to partition spaces. This approach bridges vector-based and pixel-based partitioning methods, offering both flexibility and exploratory power in generating diverse layouts. We present two planning strategies: one-shot planning, which generates entire layouts in a single pass, and dynamic planning, which allows for adaptive refinement by continuously transforming laser-walls. Additionally, we introduce on-light and off-light wall transformations for smooth and fast layout refinement, as well as identity-less and identity-full walls for versatile room assignment. We developed SpaceLayoutGym, an open-source OpenAI Gym compatible simulator for generating and evaluating space layouts. The RL agent processes the input design scenarios and generates solutions following a reward function that balances geometrical and topological requirements. Our results demonstrate that the RL-based laser-wall approach can generate diverse and functional space layouts that satisfy both geometric constraints and topological requirements and is architecturally intuitive.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.04407
- https://arxiv.org/pdf/2502.04407
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407308595
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407308595Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.04407Digital Object Identifier
- Title
-
Illuminating Spaces: Deep Reinforcement Learning and Laser-Wall Partitioning for Architectural Layout GenerationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-06Full publication date if available
- Authors
-
Reza Kakooee, Benjamin DillenburgerList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.04407Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.04407Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.04407Direct OA link when available
- Concepts
-
Reinforcement learning, Reinforcement, Computer science, Artificial intelligence, Architectural engineering, Engineering, Structural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407308595 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.04407 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.04407 |
| ids.openalex | https://openalex.org/W4407308595 |
| fwci | |
| type | preprint |
| title | Illuminating Spaces: Deep Reinforcement Learning and Laser-Wall Partitioning for Architectural Layout Generation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11211 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.941100001335144 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1907 |
| topics[0].subfield.display_name | Geology |
| topics[0].display_name | 3D Surveying and Cultural Heritage |
| topics[1].id | https://openalex.org/T11814 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9373000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Advanced Manufacturing and Logistics Optimization |
| topics[2].id | https://openalex.org/T13518 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9294000267982483 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2216 |
| topics[2].subfield.display_name | Architecture |
| topics[2].display_name | Architecture and Computational Design |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6518489122390747 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C67203356 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5111590027809143 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[1].display_name | Reinforcement |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47733360528945923 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4076656699180603 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C170154142 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32797807455062866 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[4].display_name | Architectural engineering |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2587592601776123 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C66938386 |
| concepts[6].level | 1 |
| concepts[6].score | 0.22368377447128296 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[6].display_name | Structural engineering |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.6518489122390747 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/reinforcement |
| keywords[1].score | 0.5111590027809143 |
| keywords[1].display_name | Reinforcement |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.47733360528945923 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4076656699180603 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/architectural-engineering |
| keywords[4].score | 0.32797807455062866 |
| keywords[4].display_name | Architectural engineering |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.2587592601776123 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/structural-engineering |
| keywords[6].score | 0.22368377447128296 |
| keywords[6].display_name | Structural engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.04407 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.04407 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.04407 |
| locations[1].id | doi:10.48550/arxiv.2502.04407 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.04407 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088665651 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2946-9668 |
| authorships[0].author.display_name | Reza Kakooee |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kakooee, Reza |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056325555 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5153-2985 |
| authorships[1].author.display_name | Benjamin Dillenburger |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dillenburger, Benjamin |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.04407 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Illuminating Spaces: Deep Reinforcement Learning and Laser-Wall Partitioning for Architectural Layout Generation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11211 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.941100001335144 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1907 |
| primary_topic.subfield.display_name | Geology |
| primary_topic.display_name | 3D Surveying and Cultural Heritage |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4310083477, https://openalex.org/W2328553770, https://openalex.org/W2920061524, https://openalex.org/W1977959518, https://openalex.org/W2038908348, https://openalex.org/W2107890255, https://openalex.org/W2106552856 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.04407 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.04407 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.04407 |
| primary_location.id | pmh:oai:arXiv.org:2502.04407 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.04407 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.04407 |
| publication_date | 2025-02-06 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 45, 73, 103, 150, 217 |
| abstract_inverted_index.AI | 41 |
| abstract_inverted_index.RL | 86, 206 |
| abstract_inverted_index.We | 100, 138, 190 |
| abstract_inverted_index.an | 90, 193 |
| abstract_inverted_index.as | 44, 70, 111, 179, 181 |
| abstract_inverted_index.by | 161 |
| abstract_inverted_index.in | 5, 134, 149 |
| abstract_inverted_index.is | 250 |
| abstract_inverted_index.it | 71 |
| abstract_inverted_index.of | 9, 20, 27, 60, 81, 113 |
| abstract_inverted_index.on | 51 |
| abstract_inverted_index.to | 32, 95, 117 |
| abstract_inverted_index.we | 166 |
| abstract_inverted_index.Gym | 196 |
| abstract_inverted_index.Our | 226 |
| abstract_inverted_index.SLD | 28, 88 |
| abstract_inverted_index.The | 25, 205 |
| abstract_inverted_index.and | 18, 124, 131, 153, 169, 175, 183, 201, 213, 223, 237, 246, 249 |
| abstract_inverted_index.can | 234 |
| abstract_inverted_index.for | 87, 158, 173, 186, 199 |
| abstract_inverted_index.has | 42 |
| abstract_inverted_index.the | 6, 10, 16, 21, 79, 209, 230 |
| abstract_inverted_index.two | 140 |
| abstract_inverted_index.This | 63, 120 |
| abstract_inverted_index.both | 15, 129, 243 |
| abstract_inverted_index.deep | 66 |
| abstract_inverted_index.fast | 176 |
| abstract_inverted_index.lack | 57 |
| abstract_inverted_index.rely | 50 |
| abstract_inverted_index.room | 188 |
| abstract_inverted_index.that | 56, 76, 108, 220, 229, 241 |
| abstract_inverted_index.they | 48 |
| abstract_inverted_index.vast | 35 |
| abstract_inverted_index.wall | 171 |
| abstract_inverted_index.well | 180 |
| abstract_inverted_index.(RL), | 69 |
| abstract_inverted_index.Space | 0 |
| abstract_inverted_index.While | 38 |
| abstract_inverted_index.agent | 207 |
| abstract_inverted_index.beams | 116 |
| abstract_inverted_index.early | 7 |
| abstract_inverted_index.human | 82 |
| abstract_inverted_index.input | 210 |
| abstract_inverted_index.light | 115 |
| abstract_inverted_index.novel | 104 |
| abstract_inverted_index.often | 49 |
| abstract_inverted_index.paper | 64 |
| abstract_inverted_index.pass, | 152 |
| abstract_inverted_index.power | 133 |
| abstract_inverted_index.space | 53, 92, 105, 203, 239 |
| abstract_inverted_index.using | 85 |
| abstract_inverted_index.walls | 110, 185 |
| abstract_inverted_index.which | 145, 156 |
| abstract_inverted_index.(SLD), | 3 |
| abstract_inverted_index.OpenAI | 195 |
| abstract_inverted_index.allows | 157 |
| abstract_inverted_index.design | 2, 11, 98, 211 |
| abstract_inverted_index.entire | 147 |
| abstract_inverted_index.layout | 1, 177 |
| abstract_inverted_index.method | 94, 107 |
| abstract_inverted_index.mimics | 78 |
| abstract_inverted_index.offers | 72 |
| abstract_inverted_index.reward | 218 |
| abstract_inverted_index.single | 151 |
| abstract_inverted_index.smooth | 174 |
| abstract_inverted_index.stages | 8 |
| abstract_inverted_index.bridges | 122 |
| abstract_inverted_index.diverse | 136, 236 |
| abstract_inverted_index.dynamic | 154 |
| abstract_inverted_index.emerged | 43 |
| abstract_inverted_index.explore | 34 |
| abstract_inverted_index.layouts | 148, 240 |
| abstract_inverted_index.methods | 55 |
| abstract_inverted_index.present | 139 |
| abstract_inverted_index.process | 80 |
| abstract_inverted_index.results | 227 |
| abstract_inverted_index.satisfy | 242 |
| abstract_inverted_index.spaces. | 37, 119 |
| abstract_inverted_index.Learning | 68 |
| abstract_inverted_index.RL-based | 231 |
| abstract_inverted_index.adaptive | 159 |
| abstract_inverted_index.approach | 75, 121, 233 |
| abstract_inverted_index.balances | 221 |
| abstract_inverted_index.emitters | 112 |
| abstract_inverted_index.function | 219 |
| abstract_inverted_index.generate | 96, 235 |
| abstract_inverted_index.layouts. | 137, 204 |
| abstract_inverted_index.methods, | 127 |
| abstract_inverted_index.offering | 128 |
| abstract_inverted_index.on-light | 168 |
| abstract_inverted_index.one-shot | 143 |
| abstract_inverted_index.outcome. | 24 |
| abstract_inverted_index.planning | 141 |
| abstract_inverted_index.process, | 12 |
| abstract_inverted_index.requires | 89 |
| abstract_inverted_index.solution | 36 |
| abstract_inverted_index.ultimate | 22 |
| abstract_inverted_index.composing | 93 |
| abstract_inverted_index.desirable | 97 |
| abstract_inverted_index.developed | 191 |
| abstract_inverted_index.following | 216 |
| abstract_inverted_index.generates | 146, 214 |
| abstract_inverted_index.geometric | 244 |
| abstract_inverted_index.imaginary | 114 |
| abstract_inverted_index.introduce | 101, 167 |
| abstract_inverted_index.intuitive | 58 |
| abstract_inverted_index.leverages | 65 |
| abstract_inverted_index.occurring | 4 |
| abstract_inverted_index.off-light | 170 |
| abstract_inverted_index.partition | 118 |
| abstract_inverted_index.planning, | 144, 155 |
| abstract_inverted_index.potential | 46 |
| abstract_inverted_index.processes | 208 |
| abstract_inverted_index.scenarios | 212 |
| abstract_inverted_index.simulator | 198 |
| abstract_inverted_index.solution, | 47 |
| abstract_inverted_index.solutions | 215 |
| abstract_inverted_index.versatile | 187 |
| abstract_inverted_index.aesthetics | 19 |
| abstract_inverted_index.approaches | 31 |
| abstract_inverted_index.compatible | 197 |
| abstract_inverted_index.complexity | 26 |
| abstract_inverted_index.designers. | 83 |
| abstract_inverted_index.evaluating | 202 |
| abstract_inverted_index.functional | 238 |
| abstract_inverted_index.generating | 135, 200 |
| abstract_inverted_index.generative | 40 |
| abstract_inverted_index.influences | 14 |
| abstract_inverted_index.innovative | 30 |
| abstract_inverted_index.intuitive. | 252 |
| abstract_inverted_index.laser-wall | 232 |
| abstract_inverted_index.procedural | 74 |
| abstract_inverted_index.processes. | 62 |
| abstract_inverted_index.refinement | 160 |
| abstract_inverted_index.solutions. | 99 |
| abstract_inverted_index.Effectively | 84 |
| abstract_inverted_index.assignment. | 189 |
| abstract_inverted_index.composition | 54 |
| abstract_inverted_index.constraints | 245 |
| abstract_inverted_index.demonstrate | 228 |
| abstract_inverted_index.efficiently | 33 |
| abstract_inverted_index.explorative | 91 |
| abstract_inverted_index.exploratory | 132 |
| abstract_inverted_index.flexibility | 130 |
| abstract_inverted_index.geometrical | 222 |
| abstract_inverted_index.image-based | 39 |
| abstract_inverted_index.intuitively | 77 |
| abstract_inverted_index.nonetheless | 13 |
| abstract_inverted_index.open-source | 194 |
| abstract_inverted_index.pixel-based | 52, 125 |
| abstract_inverted_index.refinement, | 178 |
| abstract_inverted_index.strategies: | 142 |
| abstract_inverted_index.topological | 224, 247 |
| abstract_inverted_index.continuously | 162 |
| abstract_inverted_index.laser-walls. | 164 |
| abstract_inverted_index.necessitates | 29 |
| abstract_inverted_index.partitioning | 106, 126 |
| abstract_inverted_index.requirements | 248 |
| abstract_inverted_index.transforming | 163 |
| abstract_inverted_index.vector-based | 123 |
| abstract_inverted_index."laser-wall", | 102 |
| abstract_inverted_index.Additionally, | 165 |
| abstract_inverted_index.Reinforcement | 67 |
| abstract_inverted_index.architectural | 23, 61 |
| abstract_inverted_index.functionality | 17 |
| abstract_inverted_index.identity-full | 184 |
| abstract_inverted_index.identity-less | 182 |
| abstract_inverted_index.requirements. | 225 |
| abstract_inverted_index.conceptualizes | 109 |
| abstract_inverted_index.representation | 59 |
| abstract_inverted_index.SpaceLayoutGym, | 192 |
| abstract_inverted_index.architecturally | 251 |
| abstract_inverted_index.transformations | 172 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |