Image De-noising with a New Threshold Value Using Wavelets Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6339/jds.2012.10(2).749
The image de-noising is the process to remove the noise from the image naturally corrupted by the noise. The wavelet method is one among the various methods for recovering infinite dimensional objects like curves, densities, images etc. The wavelet techniques are very effective to remove the noise because of its ability to capture the energy of a signal in few energy transform values. The wavelet methods are based on shrinking the wavelet coefficients in the wavelet domain. This paper concentrates on selecting a threshold for wavelet function estimation. A new threshold value is pro-posed to shrink the wavelet coefficients obtained by wavelet decomposition of a noisy image by considering that the sub band coefficients have a generalized Gaussian distribution. The proposed threshold value is based on the power of 2 in the size 2^J x 2^J of the data that can be computed efficiently. The experiment has been conducted on various test images to compare with the established threshold parameters. The result shows that the proposed threshold value removes the noise significantly.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://www.airitilibrary.com/Publication/Index/16838602-201204-201404020019-201404020019-259-270
- OA Status
- green
- Cited By
- 11
- References
- 10
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2185697096
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2185697096Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6339/jds.2012.10(2).749Digital Object Identifier
- Title
-
Image De-noising with a New Threshold Value Using WaveletsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-20Full publication date if available
- Authors
-
Baharuddin Ismail, Anjum KhanList of authors in order
- Landing page
-
https://www.airitilibrary.com/Publication/Index/16838602-201204-201404020019-201404020019-259-270Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.airitilibrary.com/Publication/Index/16838602-201204-201404020019-201404020019-259-270Direct OA link when available
- Concepts
-
Wavelet, Wavelet packet decomposition, Stationary wavelet transform, Mathematics, Second-generation wavelet transform, Wavelet transform, Discrete wavelet transform, Artificial intelligence, Pattern recognition (psychology), Noise (video), Lifting scheme, Cascade algorithm, Energy (signal processing), Gaussian noise, Algorithm, Computer science, Image (mathematics), StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2018: 3, 2017: 2, 2016: 2, 2015: 1, 2014: 2Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2185697096 |
|---|---|
| doi | https://doi.org/10.6339/jds.2012.10(2).749 |
| ids.mag | 2185697096 |
| ids.openalex | https://openalex.org/W2185697096 |
| fwci | 0.0 |
| type | article |
| title | Image De-noising with a New Threshold Value Using Wavelets |
| biblio.issue | 2 |
| biblio.volume | 10 |
| biblio.last_page | 270 |
| biblio.first_page | 259 |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T11105 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9962000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C47432892 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8760812282562256 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[0].display_name | Wavelet |
| concepts[1].id | https://openalex.org/C155777637 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6813891530036926 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2736187 |
| concepts[1].display_name | Wavelet packet decomposition |
| concepts[2].id | https://openalex.org/C73339587 |
| concepts[2].level | 5 |
| concepts[2].score | 0.658034086227417 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1375942 |
| concepts[2].display_name | Stationary wavelet transform |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6246144771575928 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C111350171 |
| concepts[4].level | 5 |
| concepts[4].score | 0.5975376963615417 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7443700 |
| concepts[4].display_name | Second-generation wavelet transform |
| concepts[5].id | https://openalex.org/C196216189 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5871420502662659 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[5].display_name | Wavelet transform |
| concepts[6].id | https://openalex.org/C46286280 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5308250784873962 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[6].display_name | Discrete wavelet transform |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.517327070236206 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5154634118080139 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C99498987 |
| concepts[9].level | 3 |
| concepts[9].score | 0.47291144728660583 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[9].display_name | Noise (video) |
| concepts[10].id | https://openalex.org/C199550912 |
| concepts[10].level | 5 |
| concepts[10].score | 0.46949103474617004 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3238415 |
| concepts[10].display_name | Lifting scheme |
| concepts[11].id | https://openalex.org/C88829872 |
| concepts[11].level | 5 |
| concepts[11].score | 0.453612357378006 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5048176 |
| concepts[11].display_name | Cascade algorithm |
| concepts[12].id | https://openalex.org/C186370098 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4412175416946411 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[12].display_name | Energy (signal processing) |
| concepts[13].id | https://openalex.org/C4199805 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4375859797000885 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2725903 |
| concepts[13].display_name | Gaussian noise |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.4337172508239746 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C41008148 |
| concepts[15].level | 0 |
| concepts[15].score | 0.37449759244918823 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[15].display_name | Computer science |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3424869179725647 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.19954538345336914 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/wavelet |
| keywords[0].score | 0.8760812282562256 |
| keywords[0].display_name | Wavelet |
| keywords[1].id | https://openalex.org/keywords/wavelet-packet-decomposition |
| keywords[1].score | 0.6813891530036926 |
| keywords[1].display_name | Wavelet packet decomposition |
| keywords[2].id | https://openalex.org/keywords/stationary-wavelet-transform |
| keywords[2].score | 0.658034086227417 |
| keywords[2].display_name | Stationary wavelet transform |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.6246144771575928 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/second-generation-wavelet-transform |
| keywords[4].score | 0.5975376963615417 |
| keywords[4].display_name | Second-generation wavelet transform |
| keywords[5].id | https://openalex.org/keywords/wavelet-transform |
| keywords[5].score | 0.5871420502662659 |
| keywords[5].display_name | Wavelet transform |
| keywords[6].id | https://openalex.org/keywords/discrete-wavelet-transform |
| keywords[6].score | 0.5308250784873962 |
| keywords[6].display_name | Discrete wavelet transform |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.517327070236206 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.5154634118080139 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/noise |
| keywords[9].score | 0.47291144728660583 |
| keywords[9].display_name | Noise (video) |
| keywords[10].id | https://openalex.org/keywords/lifting-scheme |
| keywords[10].score | 0.46949103474617004 |
| keywords[10].display_name | Lifting scheme |
| keywords[11].id | https://openalex.org/keywords/cascade-algorithm |
| keywords[11].score | 0.453612357378006 |
| keywords[11].display_name | Cascade algorithm |
| keywords[12].id | https://openalex.org/keywords/energy |
| keywords[12].score | 0.4412175416946411 |
| keywords[12].display_name | Energy (signal processing) |
| keywords[13].id | https://openalex.org/keywords/gaussian-noise |
| keywords[13].score | 0.4375859797000885 |
| keywords[13].display_name | Gaussian noise |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.4337172508239746 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/computer-science |
| keywords[15].score | 0.37449759244918823 |
| keywords[15].display_name | Computer science |
| keywords[16].id | https://openalex.org/keywords/image |
| keywords[16].score | 0.3424869179725647 |
| keywords[16].display_name | Image (mathematics) |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.19954538345336914 |
| keywords[17].display_name | Statistics |
| language | en |
| locations[0].id | mag:2185697096 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764553900 |
| locations[0].source.issn | 1680-743X, 1683-8602 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1680-743X |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Data Science |
| locations[0].source.host_organization | https://openalex.org/P4327988825 |
| locations[0].source.host_organization_name | People's University of China |
| locations[0].source.host_organization_lineage | https://openalex.org/P4327988825 |
| locations[0].source.host_organization_lineage_names | People's University of China |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | Journal of Data Science |
| locations[0].landing_page_url | https://www.airitilibrary.com/Publication/Index/16838602-201204-201404020019-201404020019-259-270 |
| authorships[0].author.id | https://openalex.org/A5050492281 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5236-5130 |
| authorships[0].author.display_name | Baharuddin Ismail |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | B. Ismail |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5036965827 |
| authorships[1].author.orcid | https://orcid.org/0009-0007-0392-8962 |
| authorships[1].author.display_name | Anjum Khan |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Anjum Khan |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.airitilibrary.com/Publication/Index/16838602-201204-201404020019-201404020019-259-270 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Image De-noising with a New Threshold Value Using Wavelets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| related_works | https://openalex.org/W1981004930, https://openalex.org/W2927059890, https://openalex.org/W2845666323, https://openalex.org/W2378271385, https://openalex.org/W2378897981, https://openalex.org/W3008237024, https://openalex.org/W2880200959, https://openalex.org/W2867205173, https://openalex.org/W2961486510, https://openalex.org/W3193858242, https://openalex.org/W2383301667, https://openalex.org/W2001279666, https://openalex.org/W2186699326, https://openalex.org/W2081670513, https://openalex.org/W2925526765, https://openalex.org/W2921286426, https://openalex.org/W3148868537, https://openalex.org/W2356116793, https://openalex.org/W2358379542, https://openalex.org/W3182417501 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2018 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2017 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2016 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2015 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2014 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2013 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | mag:2185697096 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764553900 |
| best_oa_location.source.issn | 1680-743X, 1683-8602 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1680-743X |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Data Science |
| best_oa_location.source.host_organization | https://openalex.org/P4327988825 |
| best_oa_location.source.host_organization_name | People's University of China |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4327988825 |
| best_oa_location.source.host_organization_lineage_names | People's University of China |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Journal of Data Science |
| best_oa_location.landing_page_url | https://www.airitilibrary.com/Publication/Index/16838602-201204-201404020019-201404020019-259-270 |
| primary_location.id | mag:2185697096 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764553900 |
| primary_location.source.issn | 1680-743X, 1683-8602 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1680-743X |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Data Science |
| primary_location.source.host_organization | https://openalex.org/P4327988825 |
| primary_location.source.host_organization_name | People's University of China |
| primary_location.source.host_organization_lineage | https://openalex.org/P4327988825 |
| primary_location.source.host_organization_lineage_names | People's University of China |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Journal of Data Science |
| primary_location.landing_page_url | https://www.airitilibrary.com/Publication/Index/16838602-201204-201404020019-201404020019-259-270 |
| publication_date | 2021-03-20 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2132984323, https://openalex.org/W1497908085, https://openalex.org/W2158940042, https://openalex.org/W2125527601, https://openalex.org/W2062024414, https://openalex.org/W2079724595, https://openalex.org/W191129667, https://openalex.org/W1986830331, https://openalex.org/W1502400145, https://openalex.org/W2146842127 |
| referenced_works_count | 10 |
| abstract_inverted_index.2 | 129 |
| abstract_inverted_index.A | 88 |
| abstract_inverted_index.a | 56, 82, 104, 115 |
| abstract_inverted_index.x | 134 |
| abstract_inverted_index.be | 141 |
| abstract_inverted_index.by | 15, 100, 107 |
| abstract_inverted_index.in | 58, 73, 130 |
| abstract_inverted_index.is | 3, 21, 92, 123 |
| abstract_inverted_index.of | 48, 55, 103, 128, 136 |
| abstract_inverted_index.on | 68, 80, 125, 149 |
| abstract_inverted_index.to | 6, 43, 51, 94, 153 |
| abstract_inverted_index.2^J | 133, 135 |
| abstract_inverted_index.The | 0, 18, 37, 63, 119, 144, 160 |
| abstract_inverted_index.are | 40, 66 |
| abstract_inverted_index.can | 140 |
| abstract_inverted_index.few | 59 |
| abstract_inverted_index.for | 27, 84 |
| abstract_inverted_index.has | 146 |
| abstract_inverted_index.its | 49 |
| abstract_inverted_index.new | 89 |
| abstract_inverted_index.one | 22 |
| abstract_inverted_index.sub | 111 |
| abstract_inverted_index.the | 4, 8, 11, 16, 24, 45, 53, 70, 74, 96, 110, 126, 131, 137, 156, 164, 169 |
| abstract_inverted_index.This | 77 |
| abstract_inverted_index.band | 112 |
| abstract_inverted_index.been | 147 |
| abstract_inverted_index.data | 138 |
| abstract_inverted_index.etc. | 36 |
| abstract_inverted_index.from | 10 |
| abstract_inverted_index.have | 114 |
| abstract_inverted_index.like | 32 |
| abstract_inverted_index.size | 132 |
| abstract_inverted_index.test | 151 |
| abstract_inverted_index.that | 109, 139, 163 |
| abstract_inverted_index.very | 41 |
| abstract_inverted_index.with | 155 |
| abstract_inverted_index.among | 23 |
| abstract_inverted_index.based | 67, 124 |
| abstract_inverted_index.image | 1, 12, 106 |
| abstract_inverted_index.noise | 9, 46, 170 |
| abstract_inverted_index.noisy | 105 |
| abstract_inverted_index.paper | 78 |
| abstract_inverted_index.power | 127 |
| abstract_inverted_index.shows | 162 |
| abstract_inverted_index.value | 91, 122, 167 |
| abstract_inverted_index.energy | 54, 60 |
| abstract_inverted_index.images | 35, 152 |
| abstract_inverted_index.method | 20 |
| abstract_inverted_index.noise. | 17 |
| abstract_inverted_index.remove | 7, 44 |
| abstract_inverted_index.result | 161 |
| abstract_inverted_index.shrink | 95 |
| abstract_inverted_index.signal | 57 |
| abstract_inverted_index.ability | 50 |
| abstract_inverted_index.because | 47 |
| abstract_inverted_index.capture | 52 |
| abstract_inverted_index.compare | 154 |
| abstract_inverted_index.curves, | 33 |
| abstract_inverted_index.domain. | 76 |
| abstract_inverted_index.methods | 26, 65 |
| abstract_inverted_index.objects | 31 |
| abstract_inverted_index.process | 5 |
| abstract_inverted_index.removes | 168 |
| abstract_inverted_index.values. | 62 |
| abstract_inverted_index.various | 25, 150 |
| abstract_inverted_index.wavelet | 19, 38, 64, 71, 75, 85, 97, 101 |
| abstract_inverted_index.Gaussian | 117 |
| abstract_inverted_index.computed | 142 |
| abstract_inverted_index.function | 86 |
| abstract_inverted_index.infinite | 29 |
| abstract_inverted_index.obtained | 99 |
| abstract_inverted_index.proposed | 120, 165 |
| abstract_inverted_index.conducted | 148 |
| abstract_inverted_index.corrupted | 14 |
| abstract_inverted_index.effective | 42 |
| abstract_inverted_index.naturally | 13 |
| abstract_inverted_index.pro-posed | 93 |
| abstract_inverted_index.selecting | 81 |
| abstract_inverted_index.shrinking | 69 |
| abstract_inverted_index.threshold | 83, 90, 121, 158, 166 |
| abstract_inverted_index.transform | 61 |
| abstract_inverted_index.de-noising | 2 |
| abstract_inverted_index.densities, | 34 |
| abstract_inverted_index.experiment | 145 |
| abstract_inverted_index.recovering | 28 |
| abstract_inverted_index.techniques | 39 |
| abstract_inverted_index.considering | 108 |
| abstract_inverted_index.dimensional | 30 |
| abstract_inverted_index.established | 157 |
| abstract_inverted_index.estimation. | 87 |
| abstract_inverted_index.generalized | 116 |
| abstract_inverted_index.parameters. | 159 |
| abstract_inverted_index.coefficients | 72, 98, 113 |
| abstract_inverted_index.concentrates | 79 |
| abstract_inverted_index.efficiently. | 143 |
| abstract_inverted_index.decomposition | 102 |
| abstract_inverted_index.distribution. | 118 |
| abstract_inverted_index.significantly. | 171 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8700000047683716 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.00091846 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |