Image Fusion Transformer Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2107.09011
In image fusion, images obtained from different sensors are fused to generate a single image with enhanced information. In recent years, state-of-the-art methods have adopted Convolution Neural Networks (CNNs) to encode meaningful features for image fusion. Specifically, CNN-based methods perform image fusion by fusing local features. However, they do not consider long-range dependencies that are present in the image. Transformer-based models are designed to overcome this by modeling the long-range dependencies with the help of self-attention mechanism. This motivates us to propose a novel Image Fusion Transformer (IFT) where we develop a transformer-based multi-scale fusion strategy that attends to both local and long-range information (or global context). The proposed method follows a two-stage training approach. In the first stage, we train an auto-encoder to extract deep features at multiple scales. In the second stage, multi-scale features are fused using a Spatio-Transformer (ST) fusion strategy. The ST fusion blocks are comprised of a CNN and a transformer branch which capture local and long-range features, respectively. Extensive experiments on multiple benchmark datasets show that the proposed method performs better than many competitive fusion algorithms. Furthermore, we show the effectiveness of the proposed ST fusion strategy with an ablation analysis. The source code is available at: https://github.com/Vibashan/Image-Fusion-Transformer.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2107.09011
- https://arxiv.org/pdf/2107.09011
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4300818588
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4300818588Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2107.09011Digital Object Identifier
- Title
-
Image Fusion TransformerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-19Full publication date if available
- Authors
-
Vibashan VS, Jeya Maria Jose Valanarasu, Poojan Oza, Vishal M. PatelList of authors in order
- Landing page
-
https://arxiv.org/abs/2107.09011Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2107.09011Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2107.09011Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Transformer, Image fusion, Encoder, Fusion, Pattern recognition (psychology), Convolutional neural network, Computer vision, Image (mathematics), Engineering, Voltage, Philosophy, Linguistics, Electrical engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4300818588 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2107.09011 |
| ids.doi | https://doi.org/10.48550/arxiv.2107.09011 |
| ids.openalex | https://openalex.org/W4300818588 |
| fwci | |
| type | preprint |
| title | Image Fusion Transformer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11659 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Advanced Image Fusion Techniques |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9769999980926514 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9758999943733215 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7043984532356262 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6425921320915222 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.601019024848938 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C69744172 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5649722814559937 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q860822 |
| concepts[3].display_name | Image fusion |
| concepts[4].id | https://openalex.org/C118505674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5490652322769165 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[4].display_name | Encoder |
| concepts[5].id | https://openalex.org/C158525013 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5051851868629456 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[5].display_name | Fusion |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4513102173805237 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42460212111473083 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36911740899086 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3567451238632202 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12158989906311035 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C165801399 |
| concepts[11].level | 2 |
| concepts[11].score | 0.07234442234039307 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[11].display_name | Voltage |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C119599485 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[14].display_name | Electrical engineering |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7043984532356262 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6425921320915222 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.601019024848938 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/image-fusion |
| keywords[3].score | 0.5649722814559937 |
| keywords[3].display_name | Image fusion |
| keywords[4].id | https://openalex.org/keywords/encoder |
| keywords[4].score | 0.5490652322769165 |
| keywords[4].display_name | Encoder |
| keywords[5].id | https://openalex.org/keywords/fusion |
| keywords[5].score | 0.5051851868629456 |
| keywords[5].display_name | Fusion |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4513102173805237 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.42460212111473083 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.36911740899086 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.3567451238632202 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.12158989906311035 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/voltage |
| keywords[11].score | 0.07234442234039307 |
| keywords[11].display_name | Voltage |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2107.09011 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2107.09011 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2107.09011 |
| locations[1].id | doi:10.48550/arxiv.2107.09011 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2107.09011 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004330920 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vibashan VS |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | VS, Vibashan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062008578 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jeya Maria Jose Valanarasu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Valanarasu, Jeya Maria Jose |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062459443 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5993-6650 |
| authorships[2].author.display_name | Poojan Oza |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Oza, Poojan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5004716468 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5239-692X |
| authorships[3].author.display_name | Vishal M. Patel |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Patel, Vishal M. |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2107.09011 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Image Fusion Transformer |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11659 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Advanced Image Fusion Techniques |
| related_works | https://openalex.org/W2788731446, https://openalex.org/W2204403038, https://openalex.org/W3152170969, https://openalex.org/W2379054866, https://openalex.org/W2549658594, https://openalex.org/W2095903272, https://openalex.org/W2370195708, https://openalex.org/W1490651872, https://openalex.org/W2350422455, https://openalex.org/W2139242969 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2107.09011 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2107.09011 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2107.09011 |
| primary_location.id | pmh:oai:arXiv.org:2107.09011 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2107.09011 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2107.09011 |
| publication_date | 2021-07-19 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 82, 91, 111, 139, 151, 154 |
| abstract_inverted_index.In | 0, 18, 115, 130 |
| abstract_inverted_index.ST | 145, 190 |
| abstract_inverted_index.an | 121, 194 |
| abstract_inverted_index.at | 127 |
| abstract_inverted_index.by | 42, 66 |
| abstract_inverted_index.do | 48 |
| abstract_inverted_index.in | 56 |
| abstract_inverted_index.is | 200 |
| abstract_inverted_index.of | 74, 150, 187 |
| abstract_inverted_index.on | 166 |
| abstract_inverted_index.to | 10, 29, 63, 80, 98, 123 |
| abstract_inverted_index.us | 79 |
| abstract_inverted_index.we | 89, 119, 183 |
| abstract_inverted_index.(or | 104 |
| abstract_inverted_index.CNN | 152 |
| abstract_inverted_index.The | 107, 144, 197 |
| abstract_inverted_index.and | 101, 153, 160 |
| abstract_inverted_index.are | 8, 54, 61, 136, 148 |
| abstract_inverted_index.at: | 202 |
| abstract_inverted_index.for | 33 |
| abstract_inverted_index.not | 49 |
| abstract_inverted_index.the | 57, 68, 72, 116, 131, 172, 185, 188 |
| abstract_inverted_index.(ST) | 141 |
| abstract_inverted_index.This | 77 |
| abstract_inverted_index.both | 99 |
| abstract_inverted_index.code | 199 |
| abstract_inverted_index.deep | 125 |
| abstract_inverted_index.from | 5 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.help | 73 |
| abstract_inverted_index.many | 178 |
| abstract_inverted_index.show | 170, 184 |
| abstract_inverted_index.than | 177 |
| abstract_inverted_index.that | 53, 96, 171 |
| abstract_inverted_index.they | 47 |
| abstract_inverted_index.this | 65 |
| abstract_inverted_index.with | 15, 71, 193 |
| abstract_inverted_index.(IFT) | 87 |
| abstract_inverted_index.Image | 84 |
| abstract_inverted_index.first | 117 |
| abstract_inverted_index.fused | 9, 137 |
| abstract_inverted_index.image | 1, 14, 34, 40 |
| abstract_inverted_index.local | 44, 100, 159 |
| abstract_inverted_index.novel | 83 |
| abstract_inverted_index.train | 120 |
| abstract_inverted_index.using | 138 |
| abstract_inverted_index.where | 88 |
| abstract_inverted_index.which | 157 |
| abstract_inverted_index.(CNNs) | 28 |
| abstract_inverted_index.Fusion | 85 |
| abstract_inverted_index.Neural | 26 |
| abstract_inverted_index.better | 176 |
| abstract_inverted_index.blocks | 147 |
| abstract_inverted_index.branch | 156 |
| abstract_inverted_index.encode | 30 |
| abstract_inverted_index.fusing | 43 |
| abstract_inverted_index.fusion | 41, 94, 142, 146, 180, 191 |
| abstract_inverted_index.global | 105 |
| abstract_inverted_index.image. | 58 |
| abstract_inverted_index.images | 3 |
| abstract_inverted_index.method | 109, 174 |
| abstract_inverted_index.models | 60 |
| abstract_inverted_index.recent | 19 |
| abstract_inverted_index.second | 132 |
| abstract_inverted_index.single | 13 |
| abstract_inverted_index.source | 198 |
| abstract_inverted_index.stage, | 118, 133 |
| abstract_inverted_index.years, | 20 |
| abstract_inverted_index.adopted | 24 |
| abstract_inverted_index.attends | 97 |
| abstract_inverted_index.capture | 158 |
| abstract_inverted_index.develop | 90 |
| abstract_inverted_index.extract | 124 |
| abstract_inverted_index.follows | 110 |
| abstract_inverted_index.fusion, | 2 |
| abstract_inverted_index.fusion. | 35 |
| abstract_inverted_index.methods | 22, 38 |
| abstract_inverted_index.perform | 39 |
| abstract_inverted_index.present | 55 |
| abstract_inverted_index.propose | 81 |
| abstract_inverted_index.scales. | 129 |
| abstract_inverted_index.sensors | 7 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.Networks | 27 |
| abstract_inverted_index.ablation | 195 |
| abstract_inverted_index.consider | 50 |
| abstract_inverted_index.datasets | 169 |
| abstract_inverted_index.designed | 62 |
| abstract_inverted_index.enhanced | 16 |
| abstract_inverted_index.features | 32, 126, 135 |
| abstract_inverted_index.generate | 11 |
| abstract_inverted_index.modeling | 67 |
| abstract_inverted_index.multiple | 128, 167 |
| abstract_inverted_index.obtained | 4 |
| abstract_inverted_index.overcome | 64 |
| abstract_inverted_index.performs | 175 |
| abstract_inverted_index.proposed | 108, 173, 189 |
| abstract_inverted_index.strategy | 95, 192 |
| abstract_inverted_index.training | 113 |
| abstract_inverted_index.CNN-based | 37 |
| abstract_inverted_index.Extensive | 164 |
| abstract_inverted_index.analysis. | 196 |
| abstract_inverted_index.approach. | 114 |
| abstract_inverted_index.available | 201 |
| abstract_inverted_index.benchmark | 168 |
| abstract_inverted_index.comprised | 149 |
| abstract_inverted_index.context). | 106 |
| abstract_inverted_index.different | 6 |
| abstract_inverted_index.features, | 162 |
| abstract_inverted_index.features. | 45 |
| abstract_inverted_index.motivates | 78 |
| abstract_inverted_index.strategy. | 143 |
| abstract_inverted_index.two-stage | 112 |
| abstract_inverted_index.long-range | 51, 69, 102, 161 |
| abstract_inverted_index.meaningful | 31 |
| abstract_inverted_index.mechanism. | 76 |
| abstract_inverted_index.Convolution | 25 |
| abstract_inverted_index.Transformer | 86 |
| abstract_inverted_index.algorithms. | 181 |
| abstract_inverted_index.competitive | 179 |
| abstract_inverted_index.experiments | 165 |
| abstract_inverted_index.information | 103 |
| abstract_inverted_index.multi-scale | 93, 134 |
| abstract_inverted_index.transformer | 155 |
| abstract_inverted_index.Furthermore, | 182 |
| abstract_inverted_index.auto-encoder | 122 |
| abstract_inverted_index.dependencies | 52, 70 |
| abstract_inverted_index.information. | 17 |
| abstract_inverted_index.Specifically, | 36 |
| abstract_inverted_index.effectiveness | 186 |
| abstract_inverted_index.respectively. | 163 |
| abstract_inverted_index.self-attention | 75 |
| abstract_inverted_index.state-of-the-art | 21 |
| abstract_inverted_index.Transformer-based | 59 |
| abstract_inverted_index.transformer-based | 92 |
| abstract_inverted_index.Spatio-Transformer | 140 |
| abstract_inverted_index.https://github.com/Vibashan/Image-Fusion-Transformer. | 203 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |