Image Imputation with conditional generative adversarial networks captures clinically relevant imaging features on computed tomography Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pdig.0000970
Kidney cancer is among the top 10 most common malignancies in adults, and is commonly evaluated with four-phase computed tomography (CT) imaging. However, the presence of missing or corrupted images remains a significant problem in medical imaging that impairs the detection, diagnosis, and treatment planning of kidney cancer. Deep learning approaches through conditional generative adversarial networks (cGANs) have recently shown technical promise in the task of imputing missing imaging data from these four-phase studies. In this study, we explored the clinical utility of these imputed images. We utilized a cGAN trained on 333 patients, with the task of the cGAN being to impute the image of any phase given the other three phases. We tested the clinical utility on the imputed images of the 37 patients in the test set by manually extracting 21 clinically relevant imaging features and comparing them to their ground truth counterpart. All 13 categorical clinical features had greater than 85% agreement rate between true images and their imputed counterparts. This high accuracy is maintained when stratifying across imaging phases. Imputed images also show good agreement with true images in select radiomic features including mean intensity and enhancement. Imputed images possess the features characteristic of benign or malignant diagnosis at an equivalent rate to true images. In conclusion, imputed images from cGANs have large potential for clinical use due to their ability to retain clinically relevant qualitative and quantitative features.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pdig.0000970
- OA Status
- gold
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413115492
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413115492Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pdig.0000970Digital Object Identifier
- Title
-
Image Imputation with conditional generative adversarial networks captures clinically relevant imaging features on computed tomographyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-13Full publication date if available
- Authors
-
Joseph M. Rich, Jonathan Le, Ragheb Raad, Tapas Tejura, Ali Rastegarpour, Inderbir S. Gill, Vinay Duddalwar, Assad A. OberaiList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pdig.0000970Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pdig.0000970Direct OA link when available
- Concepts
-
Artificial intelligence, Categorical variable, Computer science, Pattern recognition (psychology), Missing data, Ground truth, Generative grammar, Computed tomography, Data set, Medical imaging, Imputation (statistics), Deep learning, Machine learning, Radiology, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413115492 |
|---|---|
| doi | https://doi.org/10.1371/journal.pdig.0000970 |
| ids.doi | https://doi.org/10.1371/journal.pdig.0000970 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40802824 |
| ids.openalex | https://openalex.org/W4413115492 |
| fwci | 0.0 |
| type | article |
| title | Image Imputation with conditional generative adversarial networks captures clinically relevant imaging features on computed tomography |
| awards[0].id | https://openalex.org/G1230208712 |
| awards[0].funder_id | https://openalex.org/F4320338281 |
| awards[0].display_name | |
| awards[0].funder_award_id | W911F2010050 |
| awards[0].funder_display_name | Army Research Office |
| biblio.issue | 8 |
| biblio.volume | 4 |
| biblio.last_page | e0000970 |
| biblio.first_page | e0000970 |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10449 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Renal cell carcinoma treatment |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9768000245094299 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| funders[0].id | https://openalex.org/F4320338281 |
| funders[0].ror | https://ror.org/05epdh915 |
| funders[0].display_name | Army Research Office |
| is_xpac | False |
| apc_list.value | 2575 |
| apc_list.currency | USD |
| apc_list.value_usd | 2575 |
| apc_paid.value | 2575 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2575 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7486330270767212 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C5274069 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6053402423858643 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[1].display_name | Categorical variable |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5374162197113037 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5372336506843567 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C9357733 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5329172611236572 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[4].display_name | Missing data |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5084196925163269 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C39890363 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49318045377731323 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[6].display_name | Generative grammar |
| concepts[7].id | https://openalex.org/C544519230 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4823141098022461 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[7].display_name | Computed tomography |
| concepts[8].id | https://openalex.org/C58489278 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4777480959892273 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[8].display_name | Data set |
| concepts[9].id | https://openalex.org/C31601959 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4745817184448242 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[9].display_name | Medical imaging |
| concepts[10].id | https://openalex.org/C58041806 |
| concepts[10].level | 3 |
| concepts[10].score | 0.46637681126594543 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[10].display_name | Imputation (statistics) |
| concepts[11].id | https://openalex.org/C108583219 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4349218010902405 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[11].display_name | Deep learning |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3066868185997009 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C126838900 |
| concepts[13].level | 1 |
| concepts[13].score | 0.30584126710891724 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[13].display_name | Radiology |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2832590937614441 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7486330270767212 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/categorical-variable |
| keywords[1].score | 0.6053402423858643 |
| keywords[1].display_name | Categorical variable |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5374162197113037 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5372336506843567 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/missing-data |
| keywords[4].score | 0.5329172611236572 |
| keywords[4].display_name | Missing data |
| keywords[5].id | https://openalex.org/keywords/ground-truth |
| keywords[5].score | 0.5084196925163269 |
| keywords[5].display_name | Ground truth |
| keywords[6].id | https://openalex.org/keywords/generative-grammar |
| keywords[6].score | 0.49318045377731323 |
| keywords[6].display_name | Generative grammar |
| keywords[7].id | https://openalex.org/keywords/computed-tomography |
| keywords[7].score | 0.4823141098022461 |
| keywords[7].display_name | Computed tomography |
| keywords[8].id | https://openalex.org/keywords/data-set |
| keywords[8].score | 0.4777480959892273 |
| keywords[8].display_name | Data set |
| keywords[9].id | https://openalex.org/keywords/medical-imaging |
| keywords[9].score | 0.4745817184448242 |
| keywords[9].display_name | Medical imaging |
| keywords[10].id | https://openalex.org/keywords/imputation |
| keywords[10].score | 0.46637681126594543 |
| keywords[10].display_name | Imputation (statistics) |
| keywords[11].id | https://openalex.org/keywords/deep-learning |
| keywords[11].score | 0.4349218010902405 |
| keywords[11].display_name | Deep learning |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3066868185997009 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/radiology |
| keywords[13].score | 0.30584126710891724 |
| keywords[13].display_name | Radiology |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.2832590937614441 |
| keywords[14].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1371/journal.pdig.0000970 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210221150 |
| locations[0].source.issn | 2767-3170 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2767-3170 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLOS Digital Health |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS Digital Health |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pdig.0000970 |
| locations[1].id | pmid:40802824 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PLOS digital health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40802824 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12349720 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLOS Digit Health |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12349720 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5034100108 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1400-8479 |
| authorships[0].author.display_name | Joseph M. Rich |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiology, University of Southern California, Los Angeles, California, United States of America |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I122411786 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Biology and Bioengineering, California Institute of Technology, Pasadena, California, United States of America |
| authorships[0].institutions[0].id | https://openalex.org/I122411786 |
| authorships[0].institutions[0].ror | https://ror.org/05dxps055 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I122411786 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | California Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I1174212 |
| authorships[0].institutions[1].ror | https://ror.org/03taz7m60 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I1174212 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Southern California |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joseph Rich |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Biology and Bioengineering, California Institute of Technology, Pasadena, California, United States of America, Department of Radiology, University of Southern California, Los Angeles, California, United States of America |
| authorships[1].author.id | https://openalex.org/A5027982695 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jonathan Le |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Radiology, University of Southern California, Los Angeles, California, United States of America |
| authorships[1].institutions[0].id | https://openalex.org/I1174212 |
| authorships[1].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Southern California |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonathan Le |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Radiology, University of Southern California, Los Angeles, California, United States of America |
| authorships[2].author.id | https://openalex.org/A5063457475 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ragheb Raad |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America |
| authorships[2].institutions[0].id | https://openalex.org/I1174212 |
| authorships[2].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Southern California |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ragheb Raad |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America |
| authorships[3].author.id | https://openalex.org/A5006887038 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9569-0291 |
| authorships[3].author.display_name | Tapas Tejura |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210096972 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology, Los Angeles General Medical Center, Los Angeles, California, United States of America |
| authorships[3].institutions[0].id | https://openalex.org/I4210096972 |
| authorships[3].institutions[0].ror | https://ror.org/00spys463 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1343052199, https://openalex.org/I4210096972 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Los Angeles Medical Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tapas Tejura |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Radiology, Los Angeles General Medical Center, Los Angeles, California, United States of America |
| authorships[4].author.id | https://openalex.org/A5018532633 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7338-6739 |
| authorships[4].author.display_name | Ali Rastegarpour |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, University of Southern California, Los Angeles, California, United States of America |
| authorships[4].institutions[0].id | https://openalex.org/I1174212 |
| authorships[4].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Southern California |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ali Rastegarpour |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Radiology, University of Southern California, Los Angeles, California, United States of America |
| authorships[5].author.id | https://openalex.org/A5047742848 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5113-7846 |
| authorships[5].author.display_name | Inderbir S. Gill |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Urology, University of Southern California, Los Angeles, California, United States of America |
| authorships[5].institutions[0].id | https://openalex.org/I1174212 |
| authorships[5].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Southern California |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Inderbir Gill |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Institute of Urology, University of Southern California, Los Angeles, California, United States of America |
| authorships[6].author.id | https://openalex.org/A5006872615 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4808-5715 |
| authorships[6].author.display_name | Vinay Duddalwar |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[6].affiliations[0].raw_affiliation_string | Institute of Urology, University of Southern California, Los Angeles, California, United States of America |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210096972 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Radiology, Los Angeles General Medical Center, Los Angeles, California, United States of America |
| authorships[6].institutions[0].id | https://openalex.org/I4210096972 |
| authorships[6].institutions[0].ror | https://ror.org/00spys463 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1343052199, https://openalex.org/I4210096972 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Los Angeles Medical Center |
| authorships[6].institutions[1].id | https://openalex.org/I1174212 |
| authorships[6].institutions[1].ror | https://ror.org/03taz7m60 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I1174212 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | University of Southern California |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Vinay Duddalwar |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Radiology, Los Angeles General Medical Center, Los Angeles, California, United States of America, Institute of Urology, University of Southern California, Los Angeles, California, United States of America |
| authorships[7].author.id | https://openalex.org/A5034704499 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7668-7713 |
| authorships[7].author.display_name | Assad A. Oberai |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America |
| authorships[7].institutions[0].id | https://openalex.org/I1174212 |
| authorships[7].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Southern California |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Assad Oberai |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pdig.0000970 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Image Imputation with conditional generative adversarial networks captures clinically relevant imaging features on computed tomography |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W2055961818, https://openalex.org/W2519761320, https://openalex.org/W2903115227, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W2081476516 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1371/journal.pdig.0000970 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210221150 |
| best_oa_location.source.issn | 2767-3170 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2767-3170 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLOS Digital Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS Digital Health |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pdig.0000970 |
| primary_location.id | doi:10.1371/journal.pdig.0000970 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210221150 |
| primary_location.source.issn | 2767-3170 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2767-3170 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLOS Digital Health |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS Digital Health |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pdig.0000970 |
| publication_date | 2025-08-13 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2902590347, https://openalex.org/W1970836329, https://openalex.org/W2403455332, https://openalex.org/W2011929885, https://openalex.org/W3180449732, https://openalex.org/W3162765985, https://openalex.org/W2091054893, https://openalex.org/W2101891472, https://openalex.org/W3049123247, https://openalex.org/W4289593652, https://openalex.org/W4390500811, https://openalex.org/W4387320120, https://openalex.org/W2142918092, https://openalex.org/W4402346069, https://openalex.org/W1992514372, https://openalex.org/W4392667649, https://openalex.org/W4392173886, https://openalex.org/W4403069643 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 31, 88 |
| abstract_inverted_index.10 | 6 |
| abstract_inverted_index.13 | 147 |
| abstract_inverted_index.21 | 133 |
| abstract_inverted_index.37 | 124 |
| abstract_inverted_index.In | 74, 210 |
| abstract_inverted_index.We | 86, 113 |
| abstract_inverted_index.an | 204 |
| abstract_inverted_index.at | 203 |
| abstract_inverted_index.by | 130 |
| abstract_inverted_index.in | 10, 34, 62, 126, 183 |
| abstract_inverted_index.is | 2, 13, 167 |
| abstract_inverted_index.of | 25, 45, 65, 82, 97, 105, 122, 198 |
| abstract_inverted_index.on | 91, 118 |
| abstract_inverted_index.or | 27, 200 |
| abstract_inverted_index.to | 101, 141, 207, 223, 226 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index.333 | 92 |
| abstract_inverted_index.85% | 154 |
| abstract_inverted_index.All | 146 |
| abstract_inverted_index.and | 12, 42, 138, 160, 190, 231 |
| abstract_inverted_index.any | 106 |
| abstract_inverted_index.due | 222 |
| abstract_inverted_index.for | 219 |
| abstract_inverted_index.had | 151 |
| abstract_inverted_index.set | 129 |
| abstract_inverted_index.the | 4, 23, 39, 63, 79, 95, 98, 103, 109, 115, 119, 123, 127, 195 |
| abstract_inverted_index.top | 5 |
| abstract_inverted_index.use | 221 |
| abstract_inverted_index.(CT) | 20 |
| abstract_inverted_index.Deep | 48 |
| abstract_inverted_index.This | 164 |
| abstract_inverted_index.also | 176 |
| abstract_inverted_index.cGAN | 89, 99 |
| abstract_inverted_index.data | 69 |
| abstract_inverted_index.from | 70, 214 |
| abstract_inverted_index.good | 178 |
| abstract_inverted_index.have | 57, 216 |
| abstract_inverted_index.high | 165 |
| abstract_inverted_index.mean | 188 |
| abstract_inverted_index.most | 7 |
| abstract_inverted_index.rate | 156, 206 |
| abstract_inverted_index.show | 177 |
| abstract_inverted_index.task | 64, 96 |
| abstract_inverted_index.test | 128 |
| abstract_inverted_index.than | 153 |
| abstract_inverted_index.that | 37 |
| abstract_inverted_index.them | 140 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.true | 158, 181, 208 |
| abstract_inverted_index.when | 169 |
| abstract_inverted_index.with | 16, 94, 180 |
| abstract_inverted_index.among | 3 |
| abstract_inverted_index.being | 100 |
| abstract_inverted_index.cGANs | 215 |
| abstract_inverted_index.given | 108 |
| abstract_inverted_index.image | 104 |
| abstract_inverted_index.large | 217 |
| abstract_inverted_index.other | 110 |
| abstract_inverted_index.phase | 107 |
| abstract_inverted_index.shown | 59 |
| abstract_inverted_index.their | 142, 161, 224 |
| abstract_inverted_index.these | 71, 83 |
| abstract_inverted_index.three | 111 |
| abstract_inverted_index.truth | 144 |
| abstract_inverted_index.Kidney | 0 |
| abstract_inverted_index.across | 171 |
| abstract_inverted_index.benign | 199 |
| abstract_inverted_index.cancer | 1 |
| abstract_inverted_index.common | 8 |
| abstract_inverted_index.ground | 143 |
| abstract_inverted_index.images | 29, 121, 159, 175, 182, 193, 213 |
| abstract_inverted_index.impute | 102 |
| abstract_inverted_index.kidney | 46 |
| abstract_inverted_index.retain | 227 |
| abstract_inverted_index.select | 184 |
| abstract_inverted_index.study, | 76 |
| abstract_inverted_index.tested | 114 |
| abstract_inverted_index.(cGANs) | 56 |
| abstract_inverted_index.Imputed | 174, 192 |
| abstract_inverted_index.ability | 225 |
| abstract_inverted_index.adults, | 11 |
| abstract_inverted_index.between | 157 |
| abstract_inverted_index.cancer. | 47 |
| abstract_inverted_index.greater | 152 |
| abstract_inverted_index.images. | 85, 209 |
| abstract_inverted_index.imaging | 36, 68, 136, 172 |
| abstract_inverted_index.impairs | 38 |
| abstract_inverted_index.imputed | 84, 120, 162, 212 |
| abstract_inverted_index.medical | 35 |
| abstract_inverted_index.missing | 26, 67 |
| abstract_inverted_index.phases. | 112, 173 |
| abstract_inverted_index.possess | 194 |
| abstract_inverted_index.problem | 33 |
| abstract_inverted_index.promise | 61 |
| abstract_inverted_index.remains | 30 |
| abstract_inverted_index.through | 51 |
| abstract_inverted_index.trained | 90 |
| abstract_inverted_index.utility | 81, 117 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.accuracy | 166 |
| abstract_inverted_index.clinical | 80, 116, 149, 220 |
| abstract_inverted_index.commonly | 14 |
| abstract_inverted_index.computed | 18 |
| abstract_inverted_index.explored | 78 |
| abstract_inverted_index.features | 137, 150, 186, 196 |
| abstract_inverted_index.imaging. | 21 |
| abstract_inverted_index.imputing | 66 |
| abstract_inverted_index.learning | 49 |
| abstract_inverted_index.manually | 131 |
| abstract_inverted_index.networks | 55 |
| abstract_inverted_index.patients | 125 |
| abstract_inverted_index.planning | 44 |
| abstract_inverted_index.presence | 24 |
| abstract_inverted_index.radiomic | 185 |
| abstract_inverted_index.recently | 58 |
| abstract_inverted_index.relevant | 135, 229 |
| abstract_inverted_index.studies. | 73 |
| abstract_inverted_index.utilized | 87 |
| abstract_inverted_index.agreement | 155, 179 |
| abstract_inverted_index.comparing | 139 |
| abstract_inverted_index.corrupted | 28 |
| abstract_inverted_index.diagnosis | 202 |
| abstract_inverted_index.evaluated | 15 |
| abstract_inverted_index.features. | 233 |
| abstract_inverted_index.including | 187 |
| abstract_inverted_index.intensity | 189 |
| abstract_inverted_index.malignant | 201 |
| abstract_inverted_index.patients, | 93 |
| abstract_inverted_index.potential | 218 |
| abstract_inverted_index.technical | 60 |
| abstract_inverted_index.treatment | 43 |
| abstract_inverted_index.approaches | 50 |
| abstract_inverted_index.clinically | 134, 228 |
| abstract_inverted_index.detection, | 40 |
| abstract_inverted_index.diagnosis, | 41 |
| abstract_inverted_index.equivalent | 205 |
| abstract_inverted_index.extracting | 132 |
| abstract_inverted_index.four-phase | 17, 72 |
| abstract_inverted_index.generative | 53 |
| abstract_inverted_index.maintained | 168 |
| abstract_inverted_index.tomography | 19 |
| abstract_inverted_index.adversarial | 54 |
| abstract_inverted_index.categorical | 148 |
| abstract_inverted_index.conclusion, | 211 |
| abstract_inverted_index.conditional | 52 |
| abstract_inverted_index.qualitative | 230 |
| abstract_inverted_index.significant | 32 |
| abstract_inverted_index.stratifying | 170 |
| abstract_inverted_index.counterpart. | 145 |
| abstract_inverted_index.enhancement. | 191 |
| abstract_inverted_index.malignancies | 9 |
| abstract_inverted_index.quantitative | 232 |
| abstract_inverted_index.counterparts. | 163 |
| abstract_inverted_index.characteristic | 197 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5006872615, https://openalex.org/A5034100108, https://openalex.org/A5047742848, https://openalex.org/A5006887038, https://openalex.org/A5018532633, https://openalex.org/A5034704499, https://openalex.org/A5027982695, https://openalex.org/A5063457475 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I1174212, https://openalex.org/I122411786, https://openalex.org/I4210096972 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.44112737 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |