Image integrity and tampering detection: A hybrid approach to copy-paste forgery detection using ORB-SSD and CNN Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.55214/2576-8484.v9i10.10525
Digital image manipulation, especially copy-paste forgery, presents significant challenges to maintaining the authenticity and credibility of visual content in the digital age. As image editing techniques become increasingly sophisticated, there is a pressing need for effective and reliable methods to detect and localize manipulated regions within images. This study introduces an innovative approach that combines ORB (Oriented FAST and Rotated BRIEF) and SSD (Single Shot Detector) algorithms for key point detection and feature matching, complemented by a CNN-based image authentication process. The low-dimensional binary descriptors generated by the ORB method enhance computational efficiency, while the integration of SSD ensures precise localization of fraudulent areas. Experimental evaluations, using metrics such as precision, recall, and F1-score, demonstrate the proposed method's superior performance compared to existing state-of-the-art techniques, achieving a favorable balance between accuracy and processing speed. This approach effectively detects copy-paste forgeries, even in complex scenarios, providing a reliable tool for identifying altered digital images. The methodology has potential applications in digital forensics, copyright protection, and secure multimedia content verification.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.55214/2576-8484.v9i10.10525
- https://learning-gate.com/index.php/2576-8484/article/download/10525/3408
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4415465379
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415465379Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.55214/2576-8484.v9i10.10525Digital Object Identifier
- Title
-
Image integrity and tampering detection: A hybrid approach to copy-paste forgery detection using ORB-SSD and CNNWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-13Full publication date if available
- Authors
-
Priti Badar, G Geetha, T R MaheshList of authors in order
- Landing page
-
https://doi.org/10.55214/2576-8484.v9i10.10525Publisher landing page
- PDF URL
-
https://learning-gate.com/index.php/2576-8484/article/download/10525/3408Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://learning-gate.com/index.php/2576-8484/article/download/10525/3408Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415465379 |
|---|---|
| doi | https://doi.org/10.55214/2576-8484.v9i10.10525 |
| ids.doi | https://doi.org/10.55214/2576-8484.v9i10.10525 |
| ids.openalex | https://openalex.org/W4415465379 |
| fwci | 0.0 |
| type | article |
| title | Image integrity and tampering detection: A hybrid approach to copy-paste forgery detection using ORB-SSD and CNN |
| biblio.issue | 10 |
| biblio.volume | 9 |
| biblio.last_page | 720 |
| biblio.first_page | 704 |
| topics[0].id | https://openalex.org/T12357 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Media Forensic Detection |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9147999882698059 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.55214/2576-8484.v9i10.10525 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188960 |
| locations[0].source.issn | 2576-8484 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2576-8484 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Edelweiss Applied Science and Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://learning-gate.com/index.php/2576-8484/article/download/10525/3408 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Edelweiss Applied Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.55214/2576-8484.v9i10.10525 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5116501279 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Priti Badar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Priti Badar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101901575 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | G Geetha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Geetha G |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089547582 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5589-8992 |
| authorships[2].author.display_name | T R Mahesh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mahesh T. R. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://learning-gate.com/index.php/2576-8484/article/download/10525/3408 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-23T00:00:00 |
| display_name | Image integrity and tampering detection: A hybrid approach to copy-paste forgery detection using ORB-SSD and CNN |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12357 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Media Forensic Detection |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.55214/2576-8484.v9i10.10525 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188960 |
| best_oa_location.source.issn | 2576-8484 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2576-8484 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Edelweiss Applied Science and Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://learning-gate.com/index.php/2576-8484/article/download/10525/3408 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Edelweiss Applied Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.55214/2576-8484.v9i10.10525 |
| primary_location.id | doi:10.55214/2576-8484.v9i10.10525 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188960 |
| primary_location.source.issn | 2576-8484 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2576-8484 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Edelweiss Applied Science and Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://learning-gate.com/index.php/2576-8484/article/download/10525/3408 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Edelweiss Applied Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.55214/2576-8484.v9i10.10525 |
| publication_date | 2025-10-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 31, 76, 126, 145 |
| abstract_inverted_index.As | 22 |
| abstract_inverted_index.an | 50 |
| abstract_inverted_index.as | 109 |
| abstract_inverted_index.by | 75, 86 |
| abstract_inverted_index.in | 18, 141, 158 |
| abstract_inverted_index.is | 30 |
| abstract_inverted_index.of | 15, 96, 101 |
| abstract_inverted_index.to | 9, 39, 121 |
| abstract_inverted_index.ORB | 55, 88 |
| abstract_inverted_index.SSD | 62, 97 |
| abstract_inverted_index.The | 81, 153 |
| abstract_inverted_index.and | 13, 36, 41, 58, 61, 71, 112, 131, 163 |
| abstract_inverted_index.for | 34, 67, 148 |
| abstract_inverted_index.has | 155 |
| abstract_inverted_index.key | 68 |
| abstract_inverted_index.the | 11, 19, 87, 94, 115 |
| abstract_inverted_index.FAST | 57 |
| abstract_inverted_index.Shot | 64 |
| abstract_inverted_index.This | 47, 134 |
| abstract_inverted_index.age. | 21 |
| abstract_inverted_index.even | 140 |
| abstract_inverted_index.need | 33 |
| abstract_inverted_index.such | 108 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.tool | 147 |
| abstract_inverted_index.image | 1, 23, 78 |
| abstract_inverted_index.point | 69 |
| abstract_inverted_index.study | 48 |
| abstract_inverted_index.there | 29 |
| abstract_inverted_index.using | 106 |
| abstract_inverted_index.while | 93 |
| abstract_inverted_index.BRIEF) | 60 |
| abstract_inverted_index.areas. | 103 |
| abstract_inverted_index.become | 26 |
| abstract_inverted_index.binary | 83 |
| abstract_inverted_index.detect | 40 |
| abstract_inverted_index.method | 89 |
| abstract_inverted_index.secure | 164 |
| abstract_inverted_index.speed. | 133 |
| abstract_inverted_index.visual | 16 |
| abstract_inverted_index.within | 45 |
| abstract_inverted_index.(Single | 63 |
| abstract_inverted_index.Digital | 0 |
| abstract_inverted_index.Rotated | 59 |
| abstract_inverted_index.altered | 150 |
| abstract_inverted_index.balance | 128 |
| abstract_inverted_index.between | 129 |
| abstract_inverted_index.complex | 142 |
| abstract_inverted_index.content | 17, 166 |
| abstract_inverted_index.detects | 137 |
| abstract_inverted_index.digital | 20, 151, 159 |
| abstract_inverted_index.editing | 24 |
| abstract_inverted_index.enhance | 90 |
| abstract_inverted_index.ensures | 98 |
| abstract_inverted_index.feature | 72 |
| abstract_inverted_index.images. | 46, 152 |
| abstract_inverted_index.methods | 38 |
| abstract_inverted_index.metrics | 107 |
| abstract_inverted_index.precise | 99 |
| abstract_inverted_index.recall, | 111 |
| abstract_inverted_index.regions | 44 |
| abstract_inverted_index.accuracy | 130 |
| abstract_inverted_index.approach | 52, 135 |
| abstract_inverted_index.combines | 54 |
| abstract_inverted_index.compared | 120 |
| abstract_inverted_index.existing | 122 |
| abstract_inverted_index.forgery, | 5 |
| abstract_inverted_index.localize | 42 |
| abstract_inverted_index.method's | 117 |
| abstract_inverted_index.presents | 6 |
| abstract_inverted_index.pressing | 32 |
| abstract_inverted_index.process. | 80 |
| abstract_inverted_index.proposed | 116 |
| abstract_inverted_index.reliable | 37, 146 |
| abstract_inverted_index.superior | 118 |
| abstract_inverted_index.(Oriented | 56 |
| abstract_inverted_index.CNN-based | 77 |
| abstract_inverted_index.Detector) | 65 |
| abstract_inverted_index.F1-score, | 113 |
| abstract_inverted_index.achieving | 125 |
| abstract_inverted_index.copyright | 161 |
| abstract_inverted_index.detection | 70 |
| abstract_inverted_index.effective | 35 |
| abstract_inverted_index.favorable | 127 |
| abstract_inverted_index.generated | 85 |
| abstract_inverted_index.matching, | 73 |
| abstract_inverted_index.potential | 156 |
| abstract_inverted_index.providing | 144 |
| abstract_inverted_index.algorithms | 66 |
| abstract_inverted_index.challenges | 8 |
| abstract_inverted_index.copy-paste | 4, 138 |
| abstract_inverted_index.especially | 3 |
| abstract_inverted_index.forensics, | 160 |
| abstract_inverted_index.forgeries, | 139 |
| abstract_inverted_index.fraudulent | 102 |
| abstract_inverted_index.innovative | 51 |
| abstract_inverted_index.introduces | 49 |
| abstract_inverted_index.multimedia | 165 |
| abstract_inverted_index.precision, | 110 |
| abstract_inverted_index.processing | 132 |
| abstract_inverted_index.scenarios, | 143 |
| abstract_inverted_index.techniques | 25 |
| abstract_inverted_index.credibility | 14 |
| abstract_inverted_index.demonstrate | 114 |
| abstract_inverted_index.descriptors | 84 |
| abstract_inverted_index.effectively | 136 |
| abstract_inverted_index.efficiency, | 92 |
| abstract_inverted_index.identifying | 149 |
| abstract_inverted_index.integration | 95 |
| abstract_inverted_index.maintaining | 10 |
| abstract_inverted_index.manipulated | 43 |
| abstract_inverted_index.methodology | 154 |
| abstract_inverted_index.performance | 119 |
| abstract_inverted_index.protection, | 162 |
| abstract_inverted_index.significant | 7 |
| abstract_inverted_index.techniques, | 124 |
| abstract_inverted_index.Experimental | 104 |
| abstract_inverted_index.applications | 157 |
| abstract_inverted_index.authenticity | 12 |
| abstract_inverted_index.complemented | 74 |
| abstract_inverted_index.evaluations, | 105 |
| abstract_inverted_index.increasingly | 27 |
| abstract_inverted_index.localization | 100 |
| abstract_inverted_index.computational | 91 |
| abstract_inverted_index.manipulation, | 2 |
| abstract_inverted_index.verification. | 167 |
| abstract_inverted_index.authentication | 79 |
| abstract_inverted_index.sophisticated, | 28 |
| abstract_inverted_index.low-dimensional | 82 |
| abstract_inverted_index.state-of-the-art | 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.53559281 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |