Image model embeddings for digital pathology and drug development via self-supervised learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1101/2021.09.20.461088
Whole slide images (WSIs) contain rich pathology information which can be used to diagnose cancer, characterize the tumour microenvironment (TME), assess patient prognosis, and provide insights into the likelihood of whether a patient may respond to a given treatment. However, since WSI availability is generally scarce during early stage clinical trials, the applicability of deep learning models to new and ongoing drug development in early stages is typically limited. WSIs available in public repositories, such as The Cancer Genome Atlas (TCGA), enable an unsupervised pretraining approach to help alleviate data scarcity. Pretrained models can also be utilised for a range of downstream applications such as automated annotation, quality control (QC), and similar image search. In this work we present DIME (Drug-development Image Model Embeddings), a pipeline for training image patch embeddings for WSIs via self-supervised learning. We compare inpainting and contrastive learning approaches for embedding training in the DIME pipeline, and demonstrate state-of-the-art performance at image patch clustering. In addition, we show that the resultant embeddings allow for training effective downstream patch classifiers with relatively few WSIs, and apply this to an AstraZeneca-sponsored phase III clinical trial. We also highlight the importance of effective colour normalisation for implementing histopathology analysis pipelines, regardless of the core learning algorithm. Finally, we show via subjective exploration of embedding spaces that the DIME pipeline clusters interesting histopathological artefacts, suggesting a possible role for the method in QC pipelines. By clustering image patches according to underlying morphopathologic features, DIME supports subsequent qualitative exploration by pathologists and has the potential to inform and expediate biomarker discovery and drug development.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2021.09.20.461088
- https://www.biorxiv.org/content/biorxiv/early/2021/09/23/2021.09.20.461088.full.pdf
- OA Status
- green
- Cited By
- 2
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3199218462
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3199218462Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2021.09.20.461088Digital Object Identifier
- Title
-
Image model embeddings for digital pathology and drug development via self-supervised learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-23Full publication date if available
- Authors
-
Khan Baykaner, Mona Xu, Lucas Bordeaux, Feng Gu, Balaji Selvaraj, Isabelle Gaffney, Laura A. L. Dillon, Jason HippList of authors in order
- Landing page
-
https://doi.org/10.1101/2021.09.20.461088Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/09/23/2021.09.20.461088.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/09/23/2021.09.20.461088.full.pdfDirect OA link when available
- Concepts
-
Computer science, Pipeline (software), Cluster analysis, Digital pathology, Artificial intelligence, Drug development, Embedding, Machine learning, Deep learning, Inpainting, Image (mathematics), Pattern recognition (psychology), Drug, Medicine, Programming language, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3199218462 |
|---|---|
| doi | https://doi.org/10.1101/2021.09.20.461088 |
| ids.doi | https://doi.org/10.1101/2021.09.20.461088 |
| ids.mag | 3199218462 |
| ids.openalex | https://openalex.org/W3199218462 |
| fwci | 0.14110358 |
| type | preprint |
| title | Image model embeddings for digital pathology and drug development via self-supervised learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9896000027656555 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T11287 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9883000254631042 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1306 |
| topics[2].subfield.display_name | Cancer Research |
| topics[2].display_name | Cancer Genomics and Diagnostics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7147542238235474 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C43521106 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6874642372131348 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[1].display_name | Pipeline (software) |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6712742447853088 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C2777522853 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6452236175537109 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5276128 |
| concepts[3].display_name | Digital pathology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6001986265182495 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C64903051 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5342245697975159 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2198549 |
| concepts[5].display_name | Drug development |
| concepts[6].id | https://openalex.org/C41608201 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5294190049171448 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[6].display_name | Embedding |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4883122444152832 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4780578911304474 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C11727466 |
| concepts[9].level | 3 |
| concepts[9].score | 0.43809089064598083 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1628157 |
| concepts[9].display_name | Inpainting |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.39088335633277893 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.38927534222602844 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C2780035454 |
| concepts[12].level | 2 |
| concepts[12].score | 0.1763666272163391 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[12].display_name | Drug |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15971118211746216 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C118552586 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[15].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7147542238235474 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pipeline |
| keywords[1].score | 0.6874642372131348 |
| keywords[1].display_name | Pipeline (software) |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.6712742447853088 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/digital-pathology |
| keywords[3].score | 0.6452236175537109 |
| keywords[3].display_name | Digital pathology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6001986265182495 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/drug-development |
| keywords[5].score | 0.5342245697975159 |
| keywords[5].display_name | Drug development |
| keywords[6].id | https://openalex.org/keywords/embedding |
| keywords[6].score | 0.5294190049171448 |
| keywords[6].display_name | Embedding |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4883122444152832 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.4780578911304474 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/inpainting |
| keywords[9].score | 0.43809089064598083 |
| keywords[9].display_name | Inpainting |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.39088335633277893 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.38927534222602844 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/drug |
| keywords[12].score | 0.1763666272163391 |
| keywords[12].display_name | Drug |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.15971118211746216 |
| keywords[13].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1101/2021.09.20.461088 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/09/23/2021.09.20.461088.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2021.09.20.461088 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5028156232 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Khan Baykaner |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I105036370 |
| authorships[0].affiliations[0].raw_affiliation_string | AstraZeneca, Cambridge, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I105036370 |
| authorships[0].institutions[0].ror | https://ror.org/04r9x1a08 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I105036370 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | AstraZeneca (United Kingdom) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khan Baykaner |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | AstraZeneca, Cambridge, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5079224248 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mona Xu |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I105036370 |
| authorships[1].affiliations[0].raw_affiliation_string | AstraZeneca, Cambridge, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I105036370 |
| authorships[1].institutions[0].ror | https://ror.org/04r9x1a08 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I105036370 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | AstraZeneca (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mona Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | AstraZeneca, Cambridge, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5081257309 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Lucas Bordeaux |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I105036370 |
| authorships[2].affiliations[0].raw_affiliation_string | AstraZeneca, Cambridge, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I105036370 |
| authorships[2].institutions[0].ror | https://ror.org/04r9x1a08 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I105036370 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | AstraZeneca (United Kingdom) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lucas Bordeaux |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | AstraZeneca, Cambridge, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5078359064 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5337-4282 |
| authorships[3].author.display_name | Feng Gu |
| authorships[3].countries | SE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210143795 |
| authorships[3].affiliations[0].raw_affiliation_string | AstraZeneca, Gothenburg, Sweden |
| authorships[3].institutions[0].id | https://openalex.org/I4210143795 |
| authorships[3].institutions[0].ror | https://ror.org/04wwrrg31 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210143795 |
| authorships[3].institutions[0].country_code | SE |
| authorships[3].institutions[0].display_name | AstraZeneca (Sweden) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Feng Gu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | AstraZeneca, Gothenburg, Sweden |
| authorships[4].author.id | https://openalex.org/A5103056277 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-2314-8423 |
| authorships[4].author.display_name | Balaji Selvaraj |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210127920 |
| authorships[4].affiliations[0].raw_affiliation_string | AstraZeneca, Chennai, India |
| authorships[4].institutions[0].id | https://openalex.org/I4210127920 |
| authorships[4].institutions[0].ror | https://ror.org/03ma9wk70 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210127920 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | AstraZeneca (India) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Balaji Selvaraj |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | AstraZeneca, Chennai, India |
| authorships[5].author.id | https://openalex.org/A5089193233 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Isabelle Gaffney |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I105036370 |
| authorships[5].affiliations[0].raw_affiliation_string | AstraZeneca, London, United Kingdom |
| authorships[5].institutions[0].id | https://openalex.org/I105036370 |
| authorships[5].institutions[0].ror | https://ror.org/04r9x1a08 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I105036370 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | AstraZeneca (United Kingdom) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Isabelle Gaffney |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | AstraZeneca, London, United Kingdom |
| authorships[6].author.id | https://openalex.org/A5103745064 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Laura A. L. Dillon |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210150756 |
| authorships[6].affiliations[0].raw_affiliation_string | AstraZeneca, Gaithersburg, United States |
| authorships[6].institutions[0].id | https://openalex.org/I4210150756 |
| authorships[6].institutions[0].ror | https://ror.org/043cec594 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210150756 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | AstraZeneca (United States) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Laura Dillon |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | AstraZeneca, Gaithersburg, United States |
| authorships[7].author.id | https://openalex.org/A5109602023 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Jason Hipp |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210150756 |
| authorships[7].affiliations[0].raw_affiliation_string | AstraZeneca, Gaithersburg, United States |
| authorships[7].institutions[0].id | https://openalex.org/I4210150756 |
| authorships[7].institutions[0].ror | https://ror.org/043cec594 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210150756 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | AstraZeneca (United States) |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Jason Hipp |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | AstraZeneca, Gaithersburg, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2021/09/23/2021.09.20.461088.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Image model embeddings for digital pathology and drug development via self-supervised learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2380775572, https://openalex.org/W2213520135, https://openalex.org/W4242046654, https://openalex.org/W1504109132, https://openalex.org/W3134074939, https://openalex.org/W2117562399, https://openalex.org/W3174923100, https://openalex.org/W2244018504, https://openalex.org/W4298074124, https://openalex.org/W2003548600 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2021.09.20.461088 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/09/23/2021.09.20.461088.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2021.09.20.461088 |
| primary_location.id | doi:10.1101/2021.09.20.461088 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/09/23/2021.09.20.461088.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2021.09.20.461088 |
| publication_date | 2021-09-23 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3036224891, https://openalex.org/W3005680577, https://openalex.org/W3035060554, https://openalex.org/W3035524453, https://openalex.org/W4239072543, https://openalex.org/W3089090082, https://openalex.org/W2912854782, https://openalex.org/W2106053110, https://openalex.org/W1975517671, https://openalex.org/W3129136505, https://openalex.org/W2946099713, https://openalex.org/W3100722990, https://openalex.org/W3048659280, https://openalex.org/W3128158496, https://openalex.org/W3108181344, https://openalex.org/W3137884901, https://openalex.org/W2133059825, https://openalex.org/W1901129140, https://openalex.org/W3006436762, https://openalex.org/W2798365772, https://openalex.org/W2786672974, https://openalex.org/W3016210953, https://openalex.org/W1968426398, https://openalex.org/W2474421929, https://openalex.org/W2971760634, https://openalex.org/W2795247881, https://openalex.org/W3109684201, https://openalex.org/W3098027819, https://openalex.org/W3206263253, https://openalex.org/W3176719058, https://openalex.org/W2108598243, https://openalex.org/W2101234009, https://openalex.org/W3128210037, https://openalex.org/W3098350627, https://openalex.org/W2331128040, https://openalex.org/W3034978746 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 32, 37, 99, 125, 226 |
| abstract_inverted_index.By | 235 |
| abstract_inverted_index.In | 115, 159 |
| abstract_inverted_index.QC | 233 |
| abstract_inverted_index.We | 137, 188 |
| abstract_inverted_index.an | 83, 182 |
| abstract_inverted_index.as | 76, 105 |
| abstract_inverted_index.at | 155 |
| abstract_inverted_index.be | 11, 96 |
| abstract_inverted_index.by | 249 |
| abstract_inverted_index.in | 64, 72, 147, 232 |
| abstract_inverted_index.is | 44, 67 |
| abstract_inverted_index.of | 30, 54, 101, 193, 203, 214 |
| abstract_inverted_index.to | 13, 36, 58, 87, 181, 240, 255 |
| abstract_inverted_index.we | 118, 161, 209 |
| abstract_inverted_index.III | 185 |
| abstract_inverted_index.The | 77 |
| abstract_inverted_index.WSI | 42 |
| abstract_inverted_index.and | 24, 60, 111, 140, 151, 178, 251, 257, 261 |
| abstract_inverted_index.can | 10, 94 |
| abstract_inverted_index.few | 176 |
| abstract_inverted_index.for | 98, 127, 132, 144, 168, 197, 229 |
| abstract_inverted_index.has | 252 |
| abstract_inverted_index.may | 34 |
| abstract_inverted_index.new | 59 |
| abstract_inverted_index.the | 17, 28, 52, 148, 164, 191, 204, 218, 230, 253 |
| abstract_inverted_index.via | 134, 211 |
| abstract_inverted_index.DIME | 120, 149, 219, 244 |
| abstract_inverted_index.WSIs | 70, 133 |
| abstract_inverted_index.also | 95, 189 |
| abstract_inverted_index.core | 205 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.deep | 55 |
| abstract_inverted_index.drug | 62, 262 |
| abstract_inverted_index.help | 88 |
| abstract_inverted_index.into | 27 |
| abstract_inverted_index.rich | 6 |
| abstract_inverted_index.role | 228 |
| abstract_inverted_index.show | 162, 210 |
| abstract_inverted_index.such | 75, 104 |
| abstract_inverted_index.that | 163, 217 |
| abstract_inverted_index.this | 116, 180 |
| abstract_inverted_index.used | 12 |
| abstract_inverted_index.with | 174 |
| abstract_inverted_index.work | 117 |
| abstract_inverted_index.(QC), | 110 |
| abstract_inverted_index.Atlas | 80 |
| abstract_inverted_index.Image | 122 |
| abstract_inverted_index.Model | 123 |
| abstract_inverted_index.WSIs, | 177 |
| abstract_inverted_index.Whole | 1 |
| abstract_inverted_index.allow | 167 |
| abstract_inverted_index.apply | 179 |
| abstract_inverted_index.early | 48, 65 |
| abstract_inverted_index.given | 38 |
| abstract_inverted_index.image | 113, 129, 156, 237 |
| abstract_inverted_index.patch | 130, 157, 172 |
| abstract_inverted_index.phase | 184 |
| abstract_inverted_index.range | 100 |
| abstract_inverted_index.since | 41 |
| abstract_inverted_index.slide | 2 |
| abstract_inverted_index.stage | 49 |
| abstract_inverted_index.which | 9 |
| abstract_inverted_index.(TME), | 20 |
| abstract_inverted_index.(WSIs) | 4 |
| abstract_inverted_index.Cancer | 78 |
| abstract_inverted_index.Genome | 79 |
| abstract_inverted_index.assess | 21 |
| abstract_inverted_index.colour | 195 |
| abstract_inverted_index.during | 47 |
| abstract_inverted_index.enable | 82 |
| abstract_inverted_index.images | 3 |
| abstract_inverted_index.inform | 256 |
| abstract_inverted_index.method | 231 |
| abstract_inverted_index.models | 57, 93 |
| abstract_inverted_index.public | 73 |
| abstract_inverted_index.scarce | 46 |
| abstract_inverted_index.spaces | 216 |
| abstract_inverted_index.stages | 66 |
| abstract_inverted_index.trial. | 187 |
| abstract_inverted_index.tumour | 18 |
| abstract_inverted_index.(TCGA), | 81 |
| abstract_inverted_index.cancer, | 15 |
| abstract_inverted_index.compare | 138 |
| abstract_inverted_index.contain | 5 |
| abstract_inverted_index.control | 109 |
| abstract_inverted_index.ongoing | 61 |
| abstract_inverted_index.patches | 238 |
| abstract_inverted_index.patient | 22, 33 |
| abstract_inverted_index.present | 119 |
| abstract_inverted_index.provide | 25 |
| abstract_inverted_index.quality | 108 |
| abstract_inverted_index.respond | 35 |
| abstract_inverted_index.search. | 114 |
| abstract_inverted_index.similar | 112 |
| abstract_inverted_index.trials, | 51 |
| abstract_inverted_index.whether | 31 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Finally, | 208 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.analysis | 200 |
| abstract_inverted_index.approach | 86 |
| abstract_inverted_index.clinical | 50, 186 |
| abstract_inverted_index.clusters | 221 |
| abstract_inverted_index.diagnose | 14 |
| abstract_inverted_index.insights | 26 |
| abstract_inverted_index.learning | 56, 142, 206 |
| abstract_inverted_index.limited. | 69 |
| abstract_inverted_index.pipeline | 126, 220 |
| abstract_inverted_index.possible | 227 |
| abstract_inverted_index.supports | 245 |
| abstract_inverted_index.training | 128, 146, 169 |
| abstract_inverted_index.utilised | 97 |
| abstract_inverted_index.according | 239 |
| abstract_inverted_index.addition, | 160 |
| abstract_inverted_index.alleviate | 89 |
| abstract_inverted_index.automated | 106 |
| abstract_inverted_index.available | 71 |
| abstract_inverted_index.biomarker | 259 |
| abstract_inverted_index.discovery | 260 |
| abstract_inverted_index.effective | 170, 194 |
| abstract_inverted_index.embedding | 145, 215 |
| abstract_inverted_index.expediate | 258 |
| abstract_inverted_index.features, | 243 |
| abstract_inverted_index.generally | 45 |
| abstract_inverted_index.highlight | 190 |
| abstract_inverted_index.learning. | 136 |
| abstract_inverted_index.pathology | 7 |
| abstract_inverted_index.pipeline, | 150 |
| abstract_inverted_index.potential | 254 |
| abstract_inverted_index.resultant | 165 |
| abstract_inverted_index.scarcity. | 91 |
| abstract_inverted_index.typically | 68 |
| abstract_inverted_index.Pretrained | 92 |
| abstract_inverted_index.algorithm. | 207 |
| abstract_inverted_index.approaches | 143 |
| abstract_inverted_index.artefacts, | 224 |
| abstract_inverted_index.clustering | 236 |
| abstract_inverted_index.downstream | 102, 171 |
| abstract_inverted_index.embeddings | 131, 166 |
| abstract_inverted_index.importance | 192 |
| abstract_inverted_index.inpainting | 139 |
| abstract_inverted_index.likelihood | 29 |
| abstract_inverted_index.pipelines, | 201 |
| abstract_inverted_index.pipelines. | 234 |
| abstract_inverted_index.prognosis, | 23 |
| abstract_inverted_index.regardless | 202 |
| abstract_inverted_index.relatively | 175 |
| abstract_inverted_index.subjective | 212 |
| abstract_inverted_index.subsequent | 246 |
| abstract_inverted_index.suggesting | 225 |
| abstract_inverted_index.treatment. | 39 |
| abstract_inverted_index.underlying | 241 |
| abstract_inverted_index.annotation, | 107 |
| abstract_inverted_index.classifiers | 173 |
| abstract_inverted_index.clustering. | 158 |
| abstract_inverted_index.contrastive | 141 |
| abstract_inverted_index.demonstrate | 152 |
| abstract_inverted_index.development | 63 |
| abstract_inverted_index.exploration | 213, 248 |
| abstract_inverted_index.information | 8 |
| abstract_inverted_index.interesting | 222 |
| abstract_inverted_index.performance | 154 |
| abstract_inverted_index.pretraining | 85 |
| abstract_inverted_index.qualitative | 247 |
| abstract_inverted_index.Embeddings), | 124 |
| abstract_inverted_index.applications | 103 |
| abstract_inverted_index.availability | 43 |
| abstract_inverted_index.characterize | 16 |
| abstract_inverted_index.development. | 263 |
| abstract_inverted_index.implementing | 198 |
| abstract_inverted_index.pathologists | 250 |
| abstract_inverted_index.unsupervised | 84 |
| abstract_inverted_index.applicability | 53 |
| abstract_inverted_index.normalisation | 196 |
| abstract_inverted_index.repositories, | 74 |
| abstract_inverted_index.histopathology | 199 |
| abstract_inverted_index.self-supervised | 135 |
| abstract_inverted_index.microenvironment | 19 |
| abstract_inverted_index.morphopathologic | 242 |
| abstract_inverted_index.state-of-the-art | 153 |
| abstract_inverted_index.(Drug-development | 121 |
| abstract_inverted_index.histopathological | 223 |
| abstract_inverted_index.AstraZeneca-sponsored | 183 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5028156232 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I105036370 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.55645659 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |