Image Restoration with Point Spread Function Regularization and Active Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.00186
Large-scale astronomical surveys can capture numerous images of celestial objects, including galaxies and nebulae. Analysing and processing these images can reveal intricate internal structures of these objects, allowing researchers to conduct comprehensive studies on their morphology, evolution, and physical properties. However, varying noise levels and point spread functions can hamper the accuracy and efficiency of information extraction from these images. To mitigate these effects, we propose a novel image restoration algorithm that connects a deep learning-based restoration algorithm with a high-fidelity telescope simulator. During the training stage, the simulator generates images with different levels of blur and noise to train the neural network based on the quality of restored images. After training, the neural network can directly restore images obtained by the telescope, as represented by the simulator. We have tested the algorithm using real and simulated observation data and have found that it effectively enhances fine structures in blurry images and increases the quality of observation images. This algorithm can be applied to large-scale sky survey data, such as data obtained by LSST, Euclid, and CSST, to further improve the accuracy and efficiency of information extraction, promoting advances in the field of astronomical research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.00186
- https://arxiv.org/pdf/2311.00186
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388275140
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388275140Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.00186Digital Object Identifier
- Title
-
Image Restoration with Point Spread Function Regularization and Active LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-31Full publication date if available
- Authors
-
Peng Jia, Jiameng Lv, Runyu Ning, Yu Song, Nan Li, Kaifan Ji, Chenzhou Cui, Shanshan LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.00186Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.00186Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.00186Direct OA link when available
- Concepts
-
Computer science, Fidelity, Point spread function, Artificial intelligence, Artificial neural network, Sky, Noise (video), Computer vision, Regularization (linguistics), Point (geometry), Scale (ratio), Image restoration, Image (mathematics), Image processing, Mathematics, Physics, Astrophysics, Telecommunications, Quantum mechanics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388275140 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.00186 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.00186 |
| ids.openalex | https://openalex.org/W4388275140 |
| fwci | |
| type | preprint |
| title | Image Restoration with Point Spread Function Regularization and Active Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9937000274658203 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T11484 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9937000274658203 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3107 |
| topics[2].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[2].display_name | Adaptive optics and wavefront sensing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7016412019729614 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776459999 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5749495625495911 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[1].display_name | Fidelity |
| concepts[2].id | https://openalex.org/C69179731 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5716078281402588 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q510427 |
| concepts[2].display_name | Point spread function |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5716052055358887 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5438942313194275 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C73329638 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5356452465057373 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q527 |
| concepts[5].display_name | Sky |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5146552324295044 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5047723054885864 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C2776135515 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47234952449798584 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[8].display_name | Regularization (linguistics) |
| concepts[9].id | https://openalex.org/C28719098 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4417071044445038 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[9].display_name | Point (geometry) |
| concepts[10].id | https://openalex.org/C2778755073 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4364067018032074 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[10].display_name | Scale (ratio) |
| concepts[11].id | https://openalex.org/C106430172 |
| concepts[11].level | 4 |
| concepts[11].score | 0.4321214258670807 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6002272 |
| concepts[11].display_name | Image restoration |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3677349090576172 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C9417928 |
| concepts[13].level | 3 |
| concepts[13].score | 0.3303268849849701 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[13].display_name | Image processing |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11174255609512329 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.10585099458694458 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C44870925 |
| concepts[16].level | 1 |
| concepts[16].score | 0.09507325291633606 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[16].display_name | Astrophysics |
| concepts[17].id | https://openalex.org/C76155785 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[17].display_name | Telecommunications |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7016412019729614 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/fidelity |
| keywords[1].score | 0.5749495625495911 |
| keywords[1].display_name | Fidelity |
| keywords[2].id | https://openalex.org/keywords/point-spread-function |
| keywords[2].score | 0.5716078281402588 |
| keywords[2].display_name | Point spread function |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5716052055358887 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5438942313194275 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/sky |
| keywords[5].score | 0.5356452465057373 |
| keywords[5].display_name | Sky |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.5146552324295044 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.5047723054885864 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/regularization |
| keywords[8].score | 0.47234952449798584 |
| keywords[8].display_name | Regularization (linguistics) |
| keywords[9].id | https://openalex.org/keywords/point |
| keywords[9].score | 0.4417071044445038 |
| keywords[9].display_name | Point (geometry) |
| keywords[10].id | https://openalex.org/keywords/scale |
| keywords[10].score | 0.4364067018032074 |
| keywords[10].display_name | Scale (ratio) |
| keywords[11].id | https://openalex.org/keywords/image-restoration |
| keywords[11].score | 0.4321214258670807 |
| keywords[11].display_name | Image restoration |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.3677349090576172 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/image-processing |
| keywords[13].score | 0.3303268849849701 |
| keywords[13].display_name | Image processing |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.11174255609512329 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.10585099458694458 |
| keywords[15].display_name | Physics |
| keywords[16].id | https://openalex.org/keywords/astrophysics |
| keywords[16].score | 0.09507325291633606 |
| keywords[16].display_name | Astrophysics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.00186 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.00186 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.00186 |
| locations[1].id | doi:10.48550/arxiv.2311.00186 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.00186 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101753145 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6687-0346 |
| authorships[0].author.display_name | Peng Jia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jia, Peng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5023878432 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jiameng Lv |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lv, Jiameng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062451009 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Runyu Ning |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ning, Runyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100513813 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yu Song |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Song, Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5009743545 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5973-2829 |
| authorships[4].author.display_name | Nan Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Nan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5076068224 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8950-3875 |
| authorships[5].author.display_name | Kaifan Ji |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ji, Kaifan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5034982419 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7456-1826 |
| authorships[6].author.display_name | Chenzhou Cui |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Cui, Chenzhou |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100371501 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9346-2364 |
| authorships[7].author.display_name | Shanshan Li |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Li, Shanshan |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.00186 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-03T00:00:00 |
| display_name | Image Restoration with Point Spread Function Regularization and Active Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2808332603, https://openalex.org/W2974904990, https://openalex.org/W2018534838, https://openalex.org/W1522749619, https://openalex.org/W2144336166, https://openalex.org/W2888591766, https://openalex.org/W2997591215, https://openalex.org/W2079262912, https://openalex.org/W2006843870, https://openalex.org/W1602455006 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.00186 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.00186 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.00186 |
| primary_location.id | pmh:oai:arXiv.org:2311.00186 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.00186 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.00186 |
| publication_date | 2023-10-31 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 66, 73, 79 |
| abstract_inverted_index.To | 60 |
| abstract_inverted_index.We | 128 |
| abstract_inverted_index.as | 123, 169 |
| abstract_inverted_index.be | 161 |
| abstract_inverted_index.by | 120, 125, 172 |
| abstract_inverted_index.in | 148, 189 |
| abstract_inverted_index.it | 143 |
| abstract_inverted_index.of | 7, 24, 54, 94, 107, 155, 184, 192 |
| abstract_inverted_index.on | 33, 104 |
| abstract_inverted_index.to | 29, 98, 163, 177 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.and | 12, 15, 37, 44, 52, 96, 135, 139, 151, 175, 182 |
| abstract_inverted_index.can | 3, 19, 48, 115, 160 |
| abstract_inverted_index.sky | 165 |
| abstract_inverted_index.the | 50, 84, 87, 100, 105, 112, 121, 126, 131, 153, 180, 190 |
| abstract_inverted_index.This | 158 |
| abstract_inverted_index.blur | 95 |
| abstract_inverted_index.data | 138, 170 |
| abstract_inverted_index.deep | 74 |
| abstract_inverted_index.fine | 146 |
| abstract_inverted_index.from | 57 |
| abstract_inverted_index.have | 129, 140 |
| abstract_inverted_index.real | 134 |
| abstract_inverted_index.such | 168 |
| abstract_inverted_index.that | 71, 142 |
| abstract_inverted_index.with | 78, 91 |
| abstract_inverted_index.After | 110 |
| abstract_inverted_index.CSST, | 176 |
| abstract_inverted_index.LSST, | 173 |
| abstract_inverted_index.based | 103 |
| abstract_inverted_index.data, | 167 |
| abstract_inverted_index.field | 191 |
| abstract_inverted_index.found | 141 |
| abstract_inverted_index.image | 68 |
| abstract_inverted_index.noise | 42, 97 |
| abstract_inverted_index.novel | 67 |
| abstract_inverted_index.point | 45 |
| abstract_inverted_index.their | 34 |
| abstract_inverted_index.these | 17, 25, 58, 62 |
| abstract_inverted_index.train | 99 |
| abstract_inverted_index.using | 133 |
| abstract_inverted_index.During | 83 |
| abstract_inverted_index.blurry | 149 |
| abstract_inverted_index.hamper | 49 |
| abstract_inverted_index.images | 6, 18, 90, 118, 150 |
| abstract_inverted_index.levels | 43, 93 |
| abstract_inverted_index.neural | 101, 113 |
| abstract_inverted_index.reveal | 20 |
| abstract_inverted_index.spread | 46 |
| abstract_inverted_index.stage, | 86 |
| abstract_inverted_index.survey | 166 |
| abstract_inverted_index.tested | 130 |
| abstract_inverted_index.Euclid, | 174 |
| abstract_inverted_index.applied | 162 |
| abstract_inverted_index.capture | 4 |
| abstract_inverted_index.conduct | 30 |
| abstract_inverted_index.further | 178 |
| abstract_inverted_index.images. | 59, 109, 157 |
| abstract_inverted_index.improve | 179 |
| abstract_inverted_index.network | 102, 114 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.quality | 106, 154 |
| abstract_inverted_index.restore | 117 |
| abstract_inverted_index.studies | 32 |
| abstract_inverted_index.surveys | 2 |
| abstract_inverted_index.varying | 41 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.accuracy | 51, 181 |
| abstract_inverted_index.advances | 188 |
| abstract_inverted_index.allowing | 27 |
| abstract_inverted_index.connects | 72 |
| abstract_inverted_index.directly | 116 |
| abstract_inverted_index.effects, | 63 |
| abstract_inverted_index.enhances | 145 |
| abstract_inverted_index.galaxies | 11 |
| abstract_inverted_index.internal | 22 |
| abstract_inverted_index.mitigate | 61 |
| abstract_inverted_index.nebulae. | 13 |
| abstract_inverted_index.numerous | 5 |
| abstract_inverted_index.objects, | 9, 26 |
| abstract_inverted_index.obtained | 119, 171 |
| abstract_inverted_index.physical | 38 |
| abstract_inverted_index.restored | 108 |
| abstract_inverted_index.training | 85 |
| abstract_inverted_index.Analysing | 14 |
| abstract_inverted_index.algorithm | 70, 77, 132, 159 |
| abstract_inverted_index.celestial | 8 |
| abstract_inverted_index.different | 92 |
| abstract_inverted_index.functions | 47 |
| abstract_inverted_index.generates | 89 |
| abstract_inverted_index.including | 10 |
| abstract_inverted_index.increases | 152 |
| abstract_inverted_index.intricate | 21 |
| abstract_inverted_index.promoting | 187 |
| abstract_inverted_index.research. | 194 |
| abstract_inverted_index.simulated | 136 |
| abstract_inverted_index.simulator | 88 |
| abstract_inverted_index.telescope | 81 |
| abstract_inverted_index.training, | 111 |
| abstract_inverted_index.efficiency | 53, 183 |
| abstract_inverted_index.evolution, | 36 |
| abstract_inverted_index.extraction | 56 |
| abstract_inverted_index.processing | 16 |
| abstract_inverted_index.simulator. | 82, 127 |
| abstract_inverted_index.structures | 23, 147 |
| abstract_inverted_index.telescope, | 122 |
| abstract_inverted_index.Large-scale | 0 |
| abstract_inverted_index.effectively | 144 |
| abstract_inverted_index.extraction, | 186 |
| abstract_inverted_index.information | 55, 185 |
| abstract_inverted_index.large-scale | 164 |
| abstract_inverted_index.morphology, | 35 |
| abstract_inverted_index.observation | 137, 156 |
| abstract_inverted_index.properties. | 39 |
| abstract_inverted_index.represented | 124 |
| abstract_inverted_index.researchers | 28 |
| abstract_inverted_index.restoration | 69, 76 |
| abstract_inverted_index.astronomical | 1, 193 |
| abstract_inverted_index.comprehensive | 31 |
| abstract_inverted_index.high-fidelity | 80 |
| abstract_inverted_index.learning-based | 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |