Image Segmentation Refinement Based on Region Expansion and Minor Contour Adjustments Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1049/ipr2.70017
In high‐precision image segmentation tasks, even slight deviations in the segmentation results can bring about significant consequences, especially in certain application areas such as medical imaging and remote sensing image classification. The precision of segmentation has become the main factor limiting its development. Researchers typically refine image segmentation algorithms to enhance accuracy, but it is challenging for any improvement strategy to be effectively applied to images of different objects and scenes. To address this issue, we propose a two‐step refinement method for image segmentation, comprising region expansion and minor contour adjustments. First, we design an adaptive gradient thresholding module to provide gradient‐based constraints for the refinement process. Next, the region expansion module iteratively refines each segmented region based on colour differences and gradient thresholds. Finally, the minor contour adjustments module leverages local strong gradient features to refine the contour positions further. This method integrates region‐level and pixel‐level information to refine various image segmentation results. This method was applied to the BSDS500, Cells, and WHU Building datasets. The results demonstrate that the refined closed contours align more closely with the ground truth, with the most notable improvement observed at contour inflection points (corner points). Among the results, the Cells dataset showed the most significant improvement in segmentation accuracy, with the F‐score increasing from 87.51% to 89.73% and IoU from 86.83% to 88.40%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/ipr2.70017
- OA Status
- gold
- Cited By
- 1
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408319397
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408319397Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/ipr2.70017Digital Object Identifier
- Title
-
Image Segmentation Refinement Based on Region Expansion and Minor Contour AdjustmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Liyue Yan, Xing Zhang, Kafeng Wang, Siting Xiong, Di ZhangList of authors in order
- Landing page
-
https://doi.org/10.1049/ipr2.70017Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/ipr2.70017Direct OA link when available
- Concepts
-
Minor (academic), Image segmentation, Artificial intelligence, Computer science, Segmentation, Computer vision, Pattern recognition (psychology), Political science, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408319397 |
|---|---|
| doi | https://doi.org/10.1049/ipr2.70017 |
| ids.doi | https://doi.org/10.1049/ipr2.70017 |
| ids.openalex | https://openalex.org/W4408319397 |
| fwci | 3.61023173 |
| type | article |
| title | Image Segmentation Refinement Based on Region Expansion and Minor Contour Adjustments |
| awards[0].id | https://openalex.org/G2249956333 |
| awards[0].funder_id | https://openalex.org/F4320321921 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2022A1515011626 |
| awards[0].funder_display_name | Natural Science Foundation of Guangdong Province |
| awards[1].id | https://openalex.org/G2731407980 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 42071434 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 19 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T12549 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Object Detection Techniques |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321921 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Guangdong Province |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2000 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C2779760435 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6772392988204956 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5396169 |
| concepts[0].display_name | Minor (academic) |
| concepts[1].id | https://openalex.org/C124504099 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5800554156303406 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[1].display_name | Image segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5693097710609436 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5339198708534241 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4994392395019531 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43873706459999084 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4183090925216675 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C17744445 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[7].display_name | Political science |
| concepts[8].id | https://openalex.org/C199539241 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[8].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/minor |
| keywords[0].score | 0.6772392988204956 |
| keywords[0].display_name | Minor (academic) |
| keywords[1].id | https://openalex.org/keywords/image-segmentation |
| keywords[1].score | 0.5800554156303406 |
| keywords[1].display_name | Image segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5693097710609436 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5339198708534241 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.4994392395019531 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.43873706459999084 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4183090925216675 |
| keywords[6].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.1049/ipr2.70017 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S83215360 |
| locations[0].source.issn | 1751-9659, 1751-9667 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1751-9659 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IET Image Processing |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IET Image Processing |
| locations[0].landing_page_url | https://doi.org/10.1049/ipr2.70017 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5001846261 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7423-2328 |
| authorships[0].author.display_name | Liyue Yan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Architecture and Urban Planning Shenzhen University Shenzhen China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210102541 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory for Geo‐Environmental Monitoring of Great Bay Area MNR Shenzhen China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[2].raw_affiliation_string | Guangdong Key Laboratory of Urban Informatics Shenzhen China |
| authorships[0].institutions[0].id | https://openalex.org/I4210102541 |
| authorships[0].institutions[0].ror | https://ror.org/00sdcjz77 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210102541 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenzhen Bay Laboratory |
| authorships[0].institutions[1].id | https://openalex.org/I180726961 |
| authorships[0].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shenzhen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li‐yue Yan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangdong Key Laboratory of Urban Informatics Shenzhen China, Key Laboratory for Geo‐Environmental Monitoring of Great Bay Area MNR Shenzhen China, School of Architecture and Urban Planning Shenzhen University Shenzhen China |
| authorships[1].author.id | https://openalex.org/A5100625604 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2447-1408 |
| authorships[1].author.display_name | Xing Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Key Laboratory of Urban Informatics Shenzhen China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210102541 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory for Geo‐Environmental Monitoring of Great Bay Area MNR Shenzhen China |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I180726961 |
| authorships[1].affiliations[2].raw_affiliation_string | School of Architecture and Urban Planning Shenzhen University Shenzhen China |
| authorships[1].institutions[0].id | https://openalex.org/I4210102541 |
| authorships[1].institutions[0].ror | https://ror.org/00sdcjz77 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210102541 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen Bay Laboratory |
| authorships[1].institutions[1].id | https://openalex.org/I180726961 |
| authorships[1].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shenzhen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xing Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Guangdong Key Laboratory of Urban Informatics Shenzhen China, Key Laboratory for Geo‐Environmental Monitoring of Great Bay Area MNR Shenzhen China, School of Architecture and Urban Planning Shenzhen University Shenzhen China |
| authorships[2].author.id | https://openalex.org/A5069056715 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kafeng Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Technology Tsinghua University Beijing China |
| authorships[2].institutions[0].id | https://openalex.org/I99065089 |
| authorships[2].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tsinghua University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kafeng Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Technology Tsinghua University Beijing China |
| authorships[3].author.id | https://openalex.org/A5042413003 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1054-121X |
| authorships[3].author.display_name | Siting Xiong |
| authorships[3].affiliations[0].raw_affiliation_string | Guangdong Artificial Intelligence and Digital Economy Laboratory Shenzhen China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Siting Xiong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guangdong Artificial Intelligence and Digital Economy Laboratory Shenzhen China |
| authorships[4].author.id | https://openalex.org/A5032037013 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9134-6573 |
| authorships[4].author.display_name | Di Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[4].affiliations[0].raw_affiliation_string | Guangdong Key Laboratory of Urban Informatics Shenzhen China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Architecture and Urban Planning Shenzhen University Shenzhen China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210102541 |
| authorships[4].affiliations[2].raw_affiliation_string | Key Laboratory for Geo‐Environmental Monitoring of Great Bay Area MNR Shenzhen China |
| authorships[4].institutions[0].id | https://openalex.org/I4210102541 |
| authorships[4].institutions[0].ror | https://ror.org/00sdcjz77 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210102541 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shenzhen Bay Laboratory |
| authorships[4].institutions[1].id | https://openalex.org/I180726961 |
| authorships[4].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shenzhen University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | De‐jin Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Guangdong Key Laboratory of Urban Informatics Shenzhen China, Key Laboratory for Geo‐Environmental Monitoring of Great Bay Area MNR Shenzhen China, School of Architecture and Urban Planning Shenzhen University Shenzhen China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/ipr2.70017 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Image Segmentation Refinement Based on Region Expansion and Minor Contour Adjustments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2467936747, https://openalex.org/W2368619281, https://openalex.org/W2377143628, https://openalex.org/W2355995962, https://openalex.org/W2392462513, https://openalex.org/W2362718971, https://openalex.org/W2368173763, https://openalex.org/W2977970519, https://openalex.org/W191560551, https://openalex.org/W1522196789 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/ipr2.70017 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S83215360 |
| best_oa_location.source.issn | 1751-9659, 1751-9667 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1751-9659 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IET Image Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IET Image Processing |
| best_oa_location.landing_page_url | https://doi.org/10.1049/ipr2.70017 |
| primary_location.id | doi:10.1049/ipr2.70017 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S83215360 |
| primary_location.source.issn | 1751-9659, 1751-9667 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1751-9659 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IET Image Processing |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IET Image Processing |
| primary_location.landing_page_url | https://doi.org/10.1049/ipr2.70017 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4206693420, https://openalex.org/W6772750526, https://openalex.org/W2972093541, https://openalex.org/W2621285511, https://openalex.org/W3184581301, https://openalex.org/W3217116165, https://openalex.org/W2940249560, https://openalex.org/W4307366477, https://openalex.org/W2936801852, https://openalex.org/W6605232454, https://openalex.org/W4225898116, https://openalex.org/W2923486253, https://openalex.org/W4362575754, https://openalex.org/W3017097154, https://openalex.org/W4293037424, https://openalex.org/W3034050230, https://openalex.org/W2110158442, https://openalex.org/W2558156561, https://openalex.org/W4311951897, https://openalex.org/W2980998394, https://openalex.org/W3119505983, https://openalex.org/W3129029680, https://openalex.org/W3209874217, https://openalex.org/W4404294186, https://openalex.org/W4389611043, https://openalex.org/W2919358988, https://openalex.org/W2164390922, https://openalex.org/W3080447593, https://openalex.org/W2412782625, https://openalex.org/W2964309882, https://openalex.org/W3173780596, https://openalex.org/W2353346194, https://openalex.org/W2618530766, https://openalex.org/W4324368760, https://openalex.org/W3217005392, https://openalex.org/W4321095309, https://openalex.org/W4402422983, https://openalex.org/W4396980172, https://openalex.org/W4401305182, https://openalex.org/W3121791778, https://openalex.org/W4293225336, https://openalex.org/W4311141309, https://openalex.org/W4283781662, https://openalex.org/W7065218244, https://openalex.org/W2324411117, https://openalex.org/W2121927366, https://openalex.org/W2908320224, https://openalex.org/W2116046277, https://openalex.org/W2996290406, https://openalex.org/W2948553897, https://openalex.org/W2963859992, https://openalex.org/W2574253917, https://openalex.org/W2963881378, https://openalex.org/W4385270309, https://openalex.org/W126481648, https://openalex.org/W3104390926, https://openalex.org/W3141295761, https://openalex.org/W3104156061, https://openalex.org/W3132455321 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 78 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.To | 72 |
| abstract_inverted_index.an | 95 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.at | 188 |
| abstract_inverted_index.be | 62 |
| abstract_inverted_index.in | 9, 19, 205 |
| abstract_inverted_index.is | 55 |
| abstract_inverted_index.it | 54 |
| abstract_inverted_index.of | 34, 67 |
| abstract_inverted_index.on | 119 |
| abstract_inverted_index.to | 50, 61, 65, 100, 136, 149, 159, 214, 220 |
| abstract_inverted_index.we | 76, 93 |
| abstract_inverted_index.IoU | 217 |
| abstract_inverted_index.The | 32, 167 |
| abstract_inverted_index.WHU | 164 |
| abstract_inverted_index.and | 27, 70, 88, 122, 146, 163, 216 |
| abstract_inverted_index.any | 58 |
| abstract_inverted_index.but | 53 |
| abstract_inverted_index.can | 13 |
| abstract_inverted_index.for | 57, 82, 104 |
| abstract_inverted_index.has | 36 |
| abstract_inverted_index.its | 42 |
| abstract_inverted_index.the | 10, 38, 105, 109, 126, 138, 160, 171, 179, 183, 195, 197, 201, 209 |
| abstract_inverted_index.was | 157 |
| abstract_inverted_index.This | 142, 155 |
| abstract_inverted_index.each | 115 |
| abstract_inverted_index.even | 6 |
| abstract_inverted_index.from | 212, 218 |
| abstract_inverted_index.main | 39 |
| abstract_inverted_index.more | 176 |
| abstract_inverted_index.most | 184, 202 |
| abstract_inverted_index.such | 23 |
| abstract_inverted_index.that | 170 |
| abstract_inverted_index.this | 74 |
| abstract_inverted_index.with | 178, 182, 208 |
| abstract_inverted_index.Among | 194 |
| abstract_inverted_index.Cells | 198 |
| abstract_inverted_index.Next, | 108 |
| abstract_inverted_index.about | 15 |
| abstract_inverted_index.align | 175 |
| abstract_inverted_index.areas | 22 |
| abstract_inverted_index.based | 118 |
| abstract_inverted_index.bring | 14 |
| abstract_inverted_index.image | 3, 30, 47, 83, 152 |
| abstract_inverted_index.local | 132 |
| abstract_inverted_index.minor | 89, 127 |
| abstract_inverted_index.86.83% | 219 |
| abstract_inverted_index.87.51% | 213 |
| abstract_inverted_index.89.73% | 215 |
| abstract_inverted_index.Cells, | 162 |
| abstract_inverted_index.First, | 92 |
| abstract_inverted_index.become | 37 |
| abstract_inverted_index.closed | 173 |
| abstract_inverted_index.colour | 120 |
| abstract_inverted_index.design | 94 |
| abstract_inverted_index.factor | 40 |
| abstract_inverted_index.ground | 180 |
| abstract_inverted_index.images | 66 |
| abstract_inverted_index.issue, | 75 |
| abstract_inverted_index.method | 81, 143, 156 |
| abstract_inverted_index.module | 99, 112, 130 |
| abstract_inverted_index.points | 191 |
| abstract_inverted_index.refine | 46, 137, 150 |
| abstract_inverted_index.region | 86, 110, 117 |
| abstract_inverted_index.remote | 28 |
| abstract_inverted_index.showed | 200 |
| abstract_inverted_index.slight | 7 |
| abstract_inverted_index.strong | 133 |
| abstract_inverted_index.tasks, | 5 |
| abstract_inverted_index.truth, | 181 |
| abstract_inverted_index.(corner | 192 |
| abstract_inverted_index.88.40%. | 221 |
| abstract_inverted_index.address | 73 |
| abstract_inverted_index.applied | 64, 158 |
| abstract_inverted_index.certain | 20 |
| abstract_inverted_index.closely | 177 |
| abstract_inverted_index.contour | 90, 128, 139, 189 |
| abstract_inverted_index.dataset | 199 |
| abstract_inverted_index.enhance | 51 |
| abstract_inverted_index.imaging | 26 |
| abstract_inverted_index.medical | 25 |
| abstract_inverted_index.notable | 185 |
| abstract_inverted_index.objects | 69 |
| abstract_inverted_index.propose | 77 |
| abstract_inverted_index.provide | 101 |
| abstract_inverted_index.refined | 172 |
| abstract_inverted_index.refines | 114 |
| abstract_inverted_index.results | 12, 168 |
| abstract_inverted_index.scenes. | 71 |
| abstract_inverted_index.sensing | 29 |
| abstract_inverted_index.various | 151 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.BSDS500, | 161 |
| abstract_inverted_index.Building | 165 |
| abstract_inverted_index.Finally, | 125 |
| abstract_inverted_index.adaptive | 96 |
| abstract_inverted_index.contours | 174 |
| abstract_inverted_index.features | 135 |
| abstract_inverted_index.further. | 141 |
| abstract_inverted_index.gradient | 97, 123, 134 |
| abstract_inverted_index.limiting | 41 |
| abstract_inverted_index.observed | 187 |
| abstract_inverted_index.points). | 193 |
| abstract_inverted_index.process. | 107 |
| abstract_inverted_index.results, | 196 |
| abstract_inverted_index.results. | 154 |
| abstract_inverted_index.strategy | 60 |
| abstract_inverted_index.F‐score | 210 |
| abstract_inverted_index.accuracy, | 52, 207 |
| abstract_inverted_index.datasets. | 166 |
| abstract_inverted_index.different | 68 |
| abstract_inverted_index.expansion | 87, 111 |
| abstract_inverted_index.leverages | 131 |
| abstract_inverted_index.positions | 140 |
| abstract_inverted_index.precision | 33 |
| abstract_inverted_index.segmented | 116 |
| abstract_inverted_index.typically | 45 |
| abstract_inverted_index.algorithms | 49 |
| abstract_inverted_index.comprising | 85 |
| abstract_inverted_index.deviations | 8 |
| abstract_inverted_index.especially | 18 |
| abstract_inverted_index.increasing | 211 |
| abstract_inverted_index.inflection | 190 |
| abstract_inverted_index.integrates | 144 |
| abstract_inverted_index.refinement | 80, 106 |
| abstract_inverted_index.two‐step | 79 |
| abstract_inverted_index.Researchers | 44 |
| abstract_inverted_index.adjustments | 129 |
| abstract_inverted_index.application | 21 |
| abstract_inverted_index.challenging | 56 |
| abstract_inverted_index.constraints | 103 |
| abstract_inverted_index.demonstrate | 169 |
| abstract_inverted_index.differences | 121 |
| abstract_inverted_index.effectively | 63 |
| abstract_inverted_index.improvement | 59, 186, 204 |
| abstract_inverted_index.information | 148 |
| abstract_inverted_index.iteratively | 113 |
| abstract_inverted_index.significant | 16, 203 |
| abstract_inverted_index.thresholds. | 124 |
| abstract_inverted_index.adjustments. | 91 |
| abstract_inverted_index.development. | 43 |
| abstract_inverted_index.segmentation | 4, 11, 35, 48, 153, 206 |
| abstract_inverted_index.thresholding | 98 |
| abstract_inverted_index.consequences, | 17 |
| abstract_inverted_index.pixel‐level | 147 |
| abstract_inverted_index.segmentation, | 84 |
| abstract_inverted_index.region‐level | 145 |
| abstract_inverted_index.classification. | 31 |
| abstract_inverted_index.gradient‐based | 102 |
| abstract_inverted_index.high‐precision | 2 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.84007696 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |