Image segmentations produced by BAMF under the AIMI Annotations initiative Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8345959
The Imaging Data Commons (IDC)(https://imaging.datacommons.cancer.gov/) [1] connects researchers with publicly available cancer imaging data, often linked with other types of cancer data. Many of the collections have limited annotations due to the expense and effort required to create these manually. The increased capabilities of AI analysis of radiology images provide an opportunity to augment existing IDC collections with new annotation data. To further this goal, we trained several nnUNet [2] based models for a variety of radiology segmentation tasks from public datasets and used them to generate segmentations for IDC collections. To validate the model's performance, roughly 10% of the AI predictions were assigned to a validation set. For this set, a board-certified radiologist graded the quality of AI predictions on a Likert scale. If they did not 'strongly agree' with the AI output, the reviewer corrected the segmentation. This record provides the AI segmentations, Manually corrected segmentations, and Manual scores for the inspected IDC Collection images. Only 10% of the AI-derived annotations provided in this dataset are verified by expert radiologists . More details, on model training and annotations are provided within the associated manuscript to ensure transparency and reproducibility. This work was done in two stages. Versions 1.x of this record were from the first stage. Versions 2.x added additional records. In the Version 1.x collections, a medical student (non-expert) reviewed all the AI predictions and rated them on a 5-point Likert Scale, for any AI predictions in the validation set that they did not 'strongly agree' with, the non-expert provided corrected segmentations. This non-expert was not utilized for the Version 2.x additional records. Likert Score Definition: Guidelines for reviewers to grade the quality of AI segmentations. 5 Strongly Agree - Use-as-is (i.e., clinically acceptable, and could be used for treatment without change) 4 Agree - Minor edits that are not necessary. Stylistic differences, but not clinically important. The current segmentation is acceptable 3 Neither agree nor disagree - Minor edits that are necessary. Minor edits are those that the review judges can be made in less time than starting from scratch or are expected to have minimal effect on treatment outcome 2 Disagree - Major edits. This category indicates that the necessary edit is required to ensure correctness, and sufficiently significant that user would prefer to start from the scratch 1 Strongly disagree - Unusable. This category indicates that the quality of the automatic annotations is so bad that they are unusable. Zip File Folder Structure Each zip file in the collection correlates to a specific segmentation task. The common folder structure is ai-segmentations-dcm This directory contains the AI model predictions in DICOM-SEG format for all analyzed IDC collection files qa-segmentations-dcm This directory contains manual corrected segmentation files, based on the AI prediction, in DICOM-SEG format. Only a fraction, ~10%, of the AI predictions were corrected. Corrections were performed by radiologist (rad*) and non-experts (ne*) qa-results.csv CSV file linking the study/series UIDs with the ai segmentation file, radiologist corrected segmentation file, radiologist ratings of AI performance. qa-results.csv Columns The qa-results.csv file contains metadata about the segmentations, their related IDC case image, as well as the Likert ratings and comments by the reviewers. Column Description Collection The name of the IDC collection for this case PatientID PatientID in DICOM metadata of scan. Also called Case ID in the IDC StudyInstanceUID StudyInstanceUID in the DICOM metadata of the scan SeriesInstanceUID SeriesInstanceUID in the DICOM metadata of the scan Validation true/false if this scan was manually reviewed Reviewer Coded ID of the reviewer. Radiologist IDs start with ‘rad’ non-expect IDs start with ‘ne’ AimiProjectYear 2023 or 2024, This work was split over two years. The main methodology difference between the two is that in 2023, a non-expert also reviewed the AI output, but a non-expert was not utilized in 2024. AISegmentation The filename of the AI prediction file in DICOM-seg format. This file is in the ai-segmentations-dcm folder. CorrectedSegmentation The filename of the reviewer-corrected prediction file in DICOM-seg format. This file is in the qa-segmentations-dcm folder. If the reviewer strongly agreed with the AI for all segments, they did not provide any correction file. Was the AI predicted ROIs accurate? This column appears one for each segment in the task for images from AimiProjectYear 2023. The reviewer rates segmentation quality on a Likert scale. In tasks that have multiple labels in the output, there is only one rating to cover them all. Was the AI predicted {SEGMENT_NAME} label accurate? This column appears one for each segment in the task for images from AimiProjectYear 2024. The reviewer rates each segment for its quality on a Likert scale. Do you have any comments about the AI predicted ROIs? Open ended question for the reviewer Do you have any comments about the findings from the study scans? Open ended question for the reviewer File Overview brain-mr.zip Segment Description: brain tumor regions: necrosis, edema, enhancing IDC Collection: UPENN-GBM Links: model weights, github breast-fdg-pet-ct.zip Segment Description: FDG-avid lesions in breast from FDG PET/CT scans QIN-Breast IDC Collection: QIN-Breast Links: model weights, github breast-mr.zip Segment Description: Breast, Fibroglandular tissue, structural tumor IDC Collection: duke-breast-cancer-mri Links: model weights, github kidney-ct.zip Segment Description: Kidney, Tumor, and Cysts from contrast enhanced CT scans IDS Collection: TCGA-KIRC, TCGA-KIRP, TCGA-KICH, CPTAC-CCRCC Links: model weights, github liver-ct.zip Segment Description: Liver from CT scans IDC Collection: TCGA-LIHC Links: model weights, github liver2-ct.zip Segment Description: Liver and Lesions from CT scans IDC Collection: HCC-TACE-SEG, COLORECTAL-LIVER-METASTASES Links: model weights, github liver-mr.zip Segment Description: Liver from T1 MRI scans IDC Collection: TCGA-LIHC Links: model weights, github lung-ct.zip Segment Description: Lung and Nodules (3mm-30mm) from CT scans IDC Collections: Anti-PD-1-Lung LUNG-PET-CT-Dx NSCLC Radiogenomics RIDER Lung PET-CT TCGA-LUAD TCGA-LUSC Links: model weights 1, model weights 2, github lung2-ct.zip Improved model version Segment Description: Lung and Nodules (3mm-30mm) from CT scans IDC Collections: QIN-LUNG-CT, SPIE-AAPM Lung CT Challenge Links: model weights, github lung-fdg-pet-ct.zip Segment Description: Lungs and FDG-avid lesions in the lung from FDG PET/CT scans IDC Collections: ACRIN-NSCLC-FDG-PET Anti-PD-1-Lung LUNG-PET-CT-Dx NSCLC Radiogenomics RIDER Lung PET-CT TCGA-LUAD TCGA-LUSC Links: model weights, github prostate-mr.zip Segment Description: Prostate from T2 MRI scans IDC Collection: ProstateX, Prostate-MRI-US-Biopsy Links: model weights, github Changelog 2.0.2 - Fix the brain-mr segmentations to be transformed correctly 2.0.1 - added AIMI 2024 radiologist comments to qa-results.csv 2.0.0 - added AIMI 2024 segmentations 1.X - AIMI 2023 segmentations and reviewer scores
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2107.02314
- https://arxiv.org/pdf/2107.02314
- OA Status
- green
- Cited By
- 356
- References
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287100534
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287100534Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.8345959Digital Object Identifier
- Title
-
Image segmentations produced by BAMF under the AIMI Annotations initiativeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-06Full publication date if available
- Authors
-
Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel Bilello, Evan Calabrese, Errol Colak, Keyvan Farahani, Jayashree Kalpathy-Cramer, Felipe Kitamura, Sarthak Pati, Luciano M. Prevedello, Jeffrey D. Rudie, Chiharu Sako, Russell T. Shinohara, Timothy Bergquist, Rong Chai, J. Mark Eddy, Julia Elliott, Walter Reade, Thomas Schaffter, Thomas Yu, Jiaxin Zheng, Ahmed W. Moawad, Luiz Otavio Coelho, Olivia McDonnell, Elka Miller, Fanny Morón, Mark Oswood, Robert Shih, Loizos Siakallis, Yulia Bronstein, James R. Mason, Anthony F. Miller, Gagandeep Choudhary, Aanchal Agarwal, Cristina Besada, Jamal J. Derakhshan, M.C. Diogo, Daniel D. Do‐Dai, Luciano Farage, John L. Go, Mohiuddin Hadi, Virginia Hill, Michael Iv, David Joyner, Christie M. Lincoln, Eyal Lotan, Asako Miyakoshi, Mariana Sanchez-Montano, Jaya Nath, Xuan V. Nguyen, Manal Nicolas‐Jilwan, Johanna Ortiz Jiménez, Kerem Öztürk, Bojan Petrović, Chintan Shah, Lubdha M. Shah, Manas Sharma, Onur Simsek, Achint K. Singh, Salil Soman, Volodymyr Statsevych, Brent D. Weinberg, Robert J. Young, Ichiro Ikuta, Amit Agarwal, Sword C. Cambron, Richard Silbergleit, Alexandru Dusoi, Alida A. Postma, Laurent Létourneau‐Guillon, Gloria Guzmán, Atin Saha, Neetu Soni, Greg Zaharchuk, Vahe M. Zohrabian, Yingming Chen, Miloš Cekić, AKM Fazlur Rahman, Juan E. Small, Varun Sethi, Christos Davatzikos, John Mongan, Christopher P. Hess, Soonmee Cha, Javier Villanueva-Meyer, John Freymann, Justin Kirby, Benedikt Wiestler, Priscila Crivellaro, Rivka R. Colen, Aikaterini Kotrotsou, Daniel C. Marcus, Mikhail Milchenko, Arash Nazeri, Hassan M. Fathallah‐Shaykh, Roland Wiest, András Jakab, Marc‐André Weber, Abhishek MahajanList of authors in order
- Landing page
-
https://arxiv.org/abs/2107.02314Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2107.02314Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2107.02314Direct OA link when available
- Concepts
-
Benchmarking, Medical physics, Brain tumor, Computer science, Benchmark (surveying), Artificial intelligence, Medicine, Pathology, Management, Geodesy, Economics, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
356Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 83, 2024: 116, 2023: 115, 2022: 42Per-year citation counts (last 5 years)
- References (count)
-
2Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287100534 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.8345959 |
| ids.doi | https://doi.org/10.5281/zenodo.8345959 |
| ids.openalex | https://openalex.org/W4287100534 |
| fwci | |
| type | preprint |
| title | Image segmentations produced by BAMF under the AIMI Annotations initiative |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10129 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.983299970626831 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2716 |
| topics[1].subfield.display_name | Genetics |
| topics[1].display_name | Glioma Diagnosis and Treatment |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9746999740600586 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C86251818 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6955759525299072 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[0].display_name | Benchmarking |
| concepts[1].id | https://openalex.org/C19527891 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5153850317001343 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[1].display_name | Medical physics |
| concepts[2].id | https://openalex.org/C2779130545 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47577300667762756 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q233309 |
| concepts[2].display_name | Brain tumor |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4515848755836487 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43449950218200684 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41921067237854004 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.40492790937423706 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C142724271 |
| concepts[7].level | 1 |
| concepts[7].score | 0.19249308109283447 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[7].display_name | Pathology |
| concepts[8].id | https://openalex.org/C187736073 |
| concepts[8].level | 1 |
| concepts[8].score | 0.12018623948097229 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[8].display_name | Management |
| concepts[9].id | https://openalex.org/C13280743 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[9].display_name | Geodesy |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/benchmarking |
| keywords[0].score | 0.6955759525299072 |
| keywords[0].display_name | Benchmarking |
| keywords[1].id | https://openalex.org/keywords/medical-physics |
| keywords[1].score | 0.5153850317001343 |
| keywords[1].display_name | Medical physics |
| keywords[2].id | https://openalex.org/keywords/brain-tumor |
| keywords[2].score | 0.47577300667762756 |
| keywords[2].display_name | Brain tumor |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4515848755836487 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.43449950218200684 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.41921067237854004 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.40492790937423706 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/pathology |
| keywords[7].score | 0.19249308109283447 |
| keywords[7].display_name | Pathology |
| keywords[8].id | https://openalex.org/keywords/management |
| keywords[8].score | 0.12018623948097229 |
| keywords[8].display_name | Management |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2107.02314 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2107.02314 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2107.02314 |
| locations[1].id | pmh:oai:zenodo.org:13244892 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/other |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.5281/zenodo.13244892 |
| locations[2].id | pmh:oai:zenodo.org:13175280 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/other |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.5281/zenodo.13175280 |
| locations[3].id | pmh:oai:zenodo.org:12734644 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400562 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[3].source.host_organization | https://openalex.org/I67311998 |
| locations[3].source.host_organization_name | European Organization for Nuclear Research |
| locations[3].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/other |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.5281/zenodo.12734644 |
| locations[4].id | doi:10.5281/zenodo.8345959 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400562 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[4].source.host_organization | https://openalex.org/I67311998 |
| locations[4].source.host_organization_name | European Organization for Nuclear Research |
| locations[4].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | dataset |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.5281/zenodo.8345959 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5027834485 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5246-2088 |
| authorships[0].author.display_name | Ujjwal Baid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Baid, Ujjwal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071512246 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5332-3132 |
| authorships[1].author.display_name | Satyam Ghodasara |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ghodasara, Satyam |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076293951 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4025-115X |
| authorships[2].author.display_name | Suyash Mohan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohan, Suyash |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5012714358 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6313-5437 |
| authorships[3].author.display_name | Michel Bilello |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bilello, Michel |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5040692678 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1464-0354 |
| authorships[4].author.display_name | Evan Calabrese |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Calabrese, Evan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5054411765 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3771-7975 |
| authorships[5].author.display_name | Errol Colak |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Colak, Errol |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5030981069 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2111-1896 |
| authorships[6].author.display_name | Keyvan Farahani |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Farahani, Keyvan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5001020883 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Jayashree Kalpathy-Cramer |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Kalpathy-Cramer, Jayashree |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5082485951 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9992-5630 |
| authorships[8].author.display_name | Felipe Kitamura |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Kitamura, Felipe C. |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5068309305 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-2243-8487 |
| authorships[9].author.display_name | Sarthak Pati |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Pati, Sarthak |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5021250548 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-6768-6452 |
| authorships[10].author.display_name | Luciano M. Prevedello |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Prevedello, Luciano M. |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5078562544 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-8609-8421 |
| authorships[11].author.display_name | Jeffrey D. Rudie |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Rudie, Jeffrey D. |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5064222905 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-3243-3954 |
| authorships[12].author.display_name | Chiharu Sako |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Sako, Chiharu |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5037974362 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-8627-8203 |
| authorships[13].author.display_name | Russell T. Shinohara |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Shinohara, Russell T. |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5089789268 |
| authorships[14].author.orcid | https://orcid.org/0000-0001-5614-8977 |
| authorships[14].author.display_name | Timothy Bergquist |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Bergquist, Timothy |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5051328733 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-0957-7792 |
| authorships[15].author.display_name | Rong Chai |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Chai, Rong |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5090748273 |
| authorships[16].author.orcid | https://orcid.org/0000-0001-5847-3052 |
| authorships[16].author.display_name | J. Mark Eddy |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Eddy, James |
| authorships[16].is_corresponding | False |
| authorships[17].author.id | https://openalex.org/A5109804870 |
| authorships[17].author.orcid | |
| authorships[17].author.display_name | Julia Elliott |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Elliott, Julia |
| authorships[17].is_corresponding | False |
| authorships[18].author.id | https://openalex.org/A5033121212 |
| authorships[18].author.orcid | https://orcid.org/0000-0002-9215-700X |
| authorships[18].author.display_name | Walter Reade |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Reade, Walter |
| authorships[18].is_corresponding | False |
| authorships[19].author.id | https://openalex.org/A5012654082 |
| authorships[19].author.orcid | https://orcid.org/0000-0002-8242-9462 |
| authorships[19].author.display_name | Thomas Schaffter |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Schaffter, Thomas |
| authorships[19].is_corresponding | False |
| authorships[20].author.id | https://openalex.org/A5068469075 |
| authorships[20].author.orcid | https://orcid.org/0000-0002-5841-0198 |
| authorships[20].author.display_name | Thomas Yu |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Yu, Thomas |
| authorships[20].is_corresponding | False |
| authorships[21].author.id | https://openalex.org/A5108732036 |
| authorships[21].author.orcid | https://orcid.org/0009-0004-5476-146X |
| authorships[21].author.display_name | Jiaxin Zheng |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Zheng, Jiaxin |
| authorships[21].is_corresponding | False |
| authorships[22].author.id | https://openalex.org/A5041549677 |
| authorships[22].author.orcid | https://orcid.org/0000-0001-6860-1513 |
| authorships[22].author.display_name | Ahmed W. Moawad |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Moawad, Ahmed W. |
| authorships[22].is_corresponding | False |
| authorships[23].author.id | https://openalex.org/A5040346150 |
| authorships[23].author.orcid | |
| authorships[23].author.display_name | Luiz Otavio Coelho |
| authorships[23].author_position | middle |
| authorships[23].raw_author_name | Coelho, Luiz Otavio |
| authorships[23].is_corresponding | False |
| authorships[24].author.id | https://openalex.org/A5077553734 |
| authorships[24].author.orcid | |
| authorships[24].author.display_name | Olivia McDonnell |
| authorships[24].author_position | middle |
| authorships[24].raw_author_name | McDonnell, Olivia |
| authorships[24].is_corresponding | False |
| authorships[25].author.id | https://openalex.org/A5020830890 |
| authorships[25].author.orcid | https://orcid.org/0000-0003-1075-5952 |
| authorships[25].author.display_name | Elka Miller |
| authorships[25].author_position | middle |
| authorships[25].raw_author_name | Miller, Elka |
| authorships[25].is_corresponding | False |
| authorships[26].author.id | https://openalex.org/A5071587129 |
| authorships[26].author.orcid | https://orcid.org/0000-0003-3745-2177 |
| authorships[26].author.display_name | Fanny Morón |
| authorships[26].author_position | middle |
| authorships[26].raw_author_name | Moron, Fanny E. |
| authorships[26].is_corresponding | False |
| authorships[27].author.id | https://openalex.org/A5025598851 |
| authorships[27].author.orcid | https://orcid.org/0000-0002-9942-4094 |
| authorships[27].author.display_name | Mark Oswood |
| authorships[27].author_position | middle |
| authorships[27].raw_author_name | Oswood, Mark C. |
| authorships[27].is_corresponding | False |
| authorships[28].author.id | https://openalex.org/A5055169255 |
| authorships[28].author.orcid | https://orcid.org/0000-0001-8316-2061 |
| authorships[28].author.display_name | Robert Shih |
| authorships[28].author_position | middle |
| authorships[28].raw_author_name | Shih, Robert Y. |
| authorships[28].is_corresponding | False |
| authorships[29].author.id | https://openalex.org/A5043520416 |
| authorships[29].author.orcid | https://orcid.org/0000-0003-3057-0568 |
| authorships[29].author.display_name | Loizos Siakallis |
| authorships[29].author_position | middle |
| authorships[29].raw_author_name | Siakallis, Loizos |
| authorships[29].is_corresponding | False |
| authorships[30].author.id | https://openalex.org/A5021527129 |
| authorships[30].author.orcid | |
| authorships[30].author.display_name | Yulia Bronstein |
| authorships[30].author_position | middle |
| authorships[30].raw_author_name | Bronstein, Yulia |
| authorships[30].is_corresponding | False |
| authorships[31].author.id | https://openalex.org/A5038366642 |
| authorships[31].author.orcid | https://orcid.org/0000-0002-1815-1769 |
| authorships[31].author.display_name | James R. Mason |
| authorships[31].author_position | middle |
| authorships[31].raw_author_name | Mason, James R. |
| authorships[31].is_corresponding | False |
| authorships[32].author.id | https://openalex.org/A5075810653 |
| authorships[32].author.orcid | |
| authorships[32].author.display_name | Anthony F. Miller |
| authorships[32].author_position | middle |
| authorships[32].raw_author_name | Miller, Anthony F. |
| authorships[32].is_corresponding | False |
| authorships[33].author.id | https://openalex.org/A5045598374 |
| authorships[33].author.orcid | https://orcid.org/0000-0002-3261-1979 |
| authorships[33].author.display_name | Gagandeep Choudhary |
| authorships[33].author_position | middle |
| authorships[33].raw_author_name | Choudhary, Gagandeep |
| authorships[33].is_corresponding | False |
| authorships[34].author.id | https://openalex.org/A5110927579 |
| authorships[34].author.orcid | https://orcid.org/0000-0003-4416-224X |
| authorships[34].author.display_name | Aanchal Agarwal |
| authorships[34].author_position | middle |
| authorships[34].raw_author_name | Agarwal, Aanchal |
| authorships[34].is_corresponding | False |
| authorships[35].author.id | https://openalex.org/A5103243820 |
| authorships[35].author.orcid | https://orcid.org/0000-0003-2559-7125 |
| authorships[35].author.display_name | Cristina Besada |
| authorships[35].author_position | middle |
| authorships[35].raw_author_name | Besada, Cristina H. |
| authorships[35].is_corresponding | False |
| authorships[36].author.id | https://openalex.org/A5053196997 |
| authorships[36].author.orcid | https://orcid.org/0000-0003-4046-4857 |
| authorships[36].author.display_name | Jamal J. Derakhshan |
| authorships[36].author_position | middle |
| authorships[36].raw_author_name | Derakhshan, Jamal J. |
| authorships[36].is_corresponding | False |
| authorships[37].author.id | https://openalex.org/A5003963756 |
| authorships[37].author.orcid | https://orcid.org/0000-0001-8459-910X |
| authorships[37].author.display_name | M.C. Diogo |
| authorships[37].author_position | middle |
| authorships[37].raw_author_name | Diogo, Mariana C. |
| authorships[37].is_corresponding | False |
| authorships[38].author.id | https://openalex.org/A5075028426 |
| authorships[38].author.orcid | |
| authorships[38].author.display_name | Daniel D. Do‐Dai |
| authorships[38].author_position | middle |
| authorships[38].raw_author_name | Do-Dai, Daniel D. |
| authorships[38].is_corresponding | False |
| authorships[39].author.id | https://openalex.org/A5004128335 |
| authorships[39].author.orcid | https://orcid.org/0000-0002-2293-3771 |
| authorships[39].author.display_name | Luciano Farage |
| authorships[39].author_position | middle |
| authorships[39].raw_author_name | Farage, Luciano |
| authorships[39].is_corresponding | False |
| authorships[40].author.id | https://openalex.org/A5001937364 |
| authorships[40].author.orcid | https://orcid.org/0000-0002-9246-2282 |
| authorships[40].author.display_name | John L. Go |
| authorships[40].author_position | middle |
| authorships[40].raw_author_name | Go, John L. |
| authorships[40].is_corresponding | False |
| authorships[41].author.id | https://openalex.org/A5078452344 |
| authorships[41].author.orcid | https://orcid.org/0000-0002-6981-0488 |
| authorships[41].author.display_name | Mohiuddin Hadi |
| authorships[41].author_position | middle |
| authorships[41].raw_author_name | Hadi, Mohiuddin |
| authorships[41].is_corresponding | False |
| authorships[42].author.id | https://openalex.org/A5067429873 |
| authorships[42].author.orcid | https://orcid.org/0000-0001-9146-9370 |
| authorships[42].author.display_name | Virginia Hill |
| authorships[42].author_position | middle |
| authorships[42].raw_author_name | Hill, Virginia B. |
| authorships[42].is_corresponding | False |
| authorships[43].author.id | https://openalex.org/A5100675654 |
| authorships[43].author.orcid | https://orcid.org/0000-0001-6794-7213 |
| authorships[43].author.display_name | Michael Iv |
| authorships[43].author_position | middle |
| authorships[43].raw_author_name | Iv, Michael |
| authorships[43].is_corresponding | False |
| authorships[44].author.id | https://openalex.org/A5068270822 |
| authorships[44].author.orcid | https://orcid.org/0000-0003-1283-3678 |
| authorships[44].author.display_name | David Joyner |
| authorships[44].author_position | middle |
| authorships[44].raw_author_name | Joyner, David |
| authorships[44].is_corresponding | False |
| authorships[45].author.id | https://openalex.org/A5065042088 |
| authorships[45].author.orcid | https://orcid.org/0000-0002-6956-4539 |
| authorships[45].author.display_name | Christie M. Lincoln |
| authorships[45].author_position | middle |
| authorships[45].raw_author_name | Lincoln, Christie |
| authorships[45].is_corresponding | False |
| authorships[46].author.id | https://openalex.org/A5072337882 |
| authorships[46].author.orcid | https://orcid.org/0000-0002-9526-3430 |
| authorships[46].author.display_name | Eyal Lotan |
| authorships[46].author_position | middle |
| authorships[46].raw_author_name | Lotan, Eyal |
| authorships[46].is_corresponding | False |
| authorships[47].author.id | https://openalex.org/A5001583326 |
| authorships[47].author.orcid | |
| authorships[47].author.display_name | Asako Miyakoshi |
| authorships[47].author_position | middle |
| authorships[47].raw_author_name | Miyakoshi, Asako |
| authorships[47].is_corresponding | False |
| authorships[48].author.id | https://openalex.org/A5058836911 |
| authorships[48].author.orcid | |
| authorships[48].author.display_name | Mariana Sanchez-Montano |
| authorships[48].author_position | middle |
| authorships[48].raw_author_name | Sanchez-Montano, Mariana |
| authorships[48].is_corresponding | False |
| authorships[49].author.id | https://openalex.org/A5033745623 |
| authorships[49].author.orcid | https://orcid.org/0000-0002-6578-0963 |
| authorships[49].author.display_name | Jaya Nath |
| authorships[49].author_position | middle |
| authorships[49].raw_author_name | Nath, Jaya |
| authorships[49].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2107.02314 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-25T00:00:00 |
| display_name | Image segmentations produced by BAMF under the AIMI Annotations initiative |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W1490753184, https://openalex.org/W2284465472, https://openalex.org/W2291782699, https://openalex.org/W1993948687, https://openalex.org/W2000169967, https://openalex.org/W2112883198 |
| cited_by_count | 356 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 83 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 116 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 115 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 42 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:2107.02314 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2107.02314 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2107.02314 |
| primary_location.id | pmh:oai:arXiv.org:2107.02314 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2107.02314 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2107.02314 |
| publication_date | 2024-08-06 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1641498739, https://openalex.org/W4286750295 |
| referenced_works_count | 2 |
| abstract_inverted_index.- | 282, 297, 320, 356, 386, 1021, 1031, 1040, 1046 |
| abstract_inverted_index.. | 172 |
| abstract_inverted_index.1 | 383 |
| abstract_inverted_index.2 | 354 |
| abstract_inverted_index.3 | 315 |
| abstract_inverted_index.4 | 295 |
| abstract_inverted_index.5 | 279 |
| abstract_inverted_index.a | 73, 105, 111, 121, 218, 231, 417, 460, 615, 623, 711, 763 |
| abstract_inverted_index.1, | 944 |
| abstract_inverted_index.2, | 947 |
| abstract_inverted_index.AI | 44, 100, 118, 132, 143, 225, 237, 277, 431, 454, 465, 497, 620, 635, 673, 686, 734, 773 |
| abstract_inverted_index.CT | 862, 879, 895, 928, 960, 967 |
| abstract_inverted_index.Do | 766, 782 |
| abstract_inverted_index.ID | 547, 579 |
| abstract_inverted_index.If | 124, 666 |
| abstract_inverted_index.In | 213, 714 |
| abstract_inverted_index.T1 | 910 |
| abstract_inverted_index.T2 | 1008 |
| abstract_inverted_index.To | 61, 91 |
| abstract_inverted_index.ai | 487 |
| abstract_inverted_index.an | 50 |
| abstract_inverted_index.as | 514, 516 |
| abstract_inverted_index.be | 289, 335, 1027 |
| abstract_inverted_index.by | 169, 472, 522 |
| abstract_inverted_index.if | 571 |
| abstract_inverted_index.in | 164, 195, 239, 337, 412, 434, 456, 539, 548, 553, 562, 613, 628, 638, 644, 656, 662, 697, 720, 746, 823, 980 |
| abstract_inverted_index.is | 313, 366, 398, 425, 611, 643, 661, 724 |
| abstract_inverted_index.of | 19, 23, 43, 46, 75, 98, 117, 159, 200, 276, 394, 463, 496, 530, 542, 557, 566, 580, 633, 651 |
| abstract_inverted_index.on | 120, 175, 230, 351, 452, 710, 762 |
| abstract_inverted_index.or | 344, 595 |
| abstract_inverted_index.so | 399 |
| abstract_inverted_index.to | 30, 36, 52, 85, 104, 186, 272, 347, 368, 378, 416, 728, 1026, 1037 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.1.X | 1045 |
| abstract_inverted_index.1.x | 199, 216 |
| abstract_inverted_index.10% | 97, 158 |
| abstract_inverted_index.2.x | 209, 263 |
| abstract_inverted_index.CSV | 479 |
| abstract_inverted_index.FDG | 826, 984 |
| abstract_inverted_index.Fix | 1022 |
| abstract_inverted_index.For | 108 |
| abstract_inverted_index.IDC | 55, 89, 154, 440, 511, 532, 550, 811, 830, 845, 881, 897, 913, 930, 962, 987, 1011 |
| abstract_inverted_index.IDS | 864 |
| abstract_inverted_index.IDs | 584, 589 |
| abstract_inverted_index.MRI | 911, 1009 |
| abstract_inverted_index.The | 0, 40, 310, 421, 501, 528, 604, 631, 649, 705, 754 |
| abstract_inverted_index.Was | 684, 732 |
| abstract_inverted_index.Zip | 405 |
| abstract_inverted_index.[1] | 5 |
| abstract_inverted_index.[2] | 69 |
| abstract_inverted_index.all | 223, 438, 675 |
| abstract_inverted_index.and | 33, 82, 148, 178, 189, 227, 287, 371, 475, 520, 857, 892, 924, 956, 977, 1050 |
| abstract_inverted_index.any | 236, 681, 769, 785 |
| abstract_inverted_index.are | 167, 180, 301, 324, 328, 345, 403 |
| abstract_inverted_index.bad | 400 |
| abstract_inverted_index.but | 306, 622 |
| abstract_inverted_index.can | 334 |
| abstract_inverted_index.did | 126, 245, 678 |
| abstract_inverted_index.due | 29 |
| abstract_inverted_index.for | 72, 88, 151, 235, 260, 270, 291, 437, 534, 674, 694, 700, 743, 749, 759, 779, 797 |
| abstract_inverted_index.its | 760 |
| abstract_inverted_index.new | 58 |
| abstract_inverted_index.nor | 318 |
| abstract_inverted_index.not | 127, 246, 258, 302, 307, 626, 679 |
| abstract_inverted_index.one | 693, 726, 742 |
| abstract_inverted_index.set | 242 |
| abstract_inverted_index.the | 24, 31, 93, 99, 115, 131, 134, 137, 142, 152, 160, 183, 205, 214, 224, 240, 250, 261, 274, 331, 363, 381, 392, 395, 413, 430, 453, 464, 482, 486, 507, 517, 523, 531, 549, 554, 558, 563, 567, 581, 609, 619, 634, 645, 652, 663, 667, 672, 685, 698, 721, 733, 747, 772, 780, 788, 791, 798, 981, 1023 |
| abstract_inverted_index.two | 196, 602, 610 |
| abstract_inverted_index.was | 193, 257, 574, 599, 625 |
| abstract_inverted_index.you | 767, 783 |
| abstract_inverted_index.zip | 410 |
| abstract_inverted_index.2023 | 594, 1048 |
| abstract_inverted_index.2024 | 1034, 1043 |
| abstract_inverted_index.AIMI | 1033, 1042, 1047 |
| abstract_inverted_index.Also | 544 |
| abstract_inverted_index.Case | 546 |
| abstract_inverted_index.Data | 2 |
| abstract_inverted_index.Each | 409 |
| abstract_inverted_index.File | 406, 800 |
| abstract_inverted_index.Lung | 923, 937, 955, 966, 995 |
| abstract_inverted_index.Many | 22 |
| abstract_inverted_index.More | 173 |
| abstract_inverted_index.Only | 157, 459 |
| abstract_inverted_index.Open | 776, 794 |
| abstract_inverted_index.ROIs | 688 |
| abstract_inverted_index.This | 139, 191, 255, 359, 388, 427, 444, 597, 641, 659, 690, 739 |
| abstract_inverted_index.UIDs | 484 |
| abstract_inverted_index.all. | 731 |
| abstract_inverted_index.also | 617 |
| abstract_inverted_index.case | 512, 536 |
| abstract_inverted_index.done | 194 |
| abstract_inverted_index.each | 695, 744, 757 |
| abstract_inverted_index.edit | 365 |
| abstract_inverted_index.file | 411, 480, 503, 637, 642, 655, 660 |
| abstract_inverted_index.from | 79, 204, 342, 380, 702, 751, 790, 825, 859, 878, 894, 909, 927, 959, 983, 1007 |
| abstract_inverted_index.have | 26, 348, 717, 768, 784 |
| abstract_inverted_index.less | 338 |
| abstract_inverted_index.lung | 982 |
| abstract_inverted_index.made | 336 |
| abstract_inverted_index.main | 605 |
| abstract_inverted_index.name | 529 |
| abstract_inverted_index.only | 725 |
| abstract_inverted_index.over | 601 |
| abstract_inverted_index.scan | 559, 568, 573 |
| abstract_inverted_index.set, | 110 |
| abstract_inverted_index.set. | 107 |
| abstract_inverted_index.task | 699, 748 |
| abstract_inverted_index.than | 340 |
| abstract_inverted_index.that | 243, 300, 323, 330, 362, 374, 391, 401, 612, 716 |
| abstract_inverted_index.them | 84, 229, 730 |
| abstract_inverted_index.they | 125, 244, 402, 677 |
| abstract_inverted_index.this | 63, 109, 165, 201, 535, 572 |
| abstract_inverted_index.time | 339 |
| abstract_inverted_index.used | 83, 290 |
| abstract_inverted_index.user | 375 |
| abstract_inverted_index.well | 515 |
| abstract_inverted_index.were | 102, 203, 467, 470 |
| abstract_inverted_index.with | 8, 16, 57, 130, 485, 586, 591, 671 |
| abstract_inverted_index.work | 192, 598 |
| abstract_inverted_index.(ne*) | 477 |
| abstract_inverted_index.2.0.0 | 1039 |
| abstract_inverted_index.2.0.1 | 1030 |
| abstract_inverted_index.2.0.2 | 1020 |
| abstract_inverted_index.2023, | 614 |
| abstract_inverted_index.2023. | 704 |
| abstract_inverted_index.2024, | 596 |
| abstract_inverted_index.2024. | 629, 753 |
| abstract_inverted_index.Agree | 281, 296 |
| abstract_inverted_index.Coded | 578 |
| abstract_inverted_index.Cysts | 858 |
| abstract_inverted_index.DICOM | 540, 555, 564 |
| abstract_inverted_index.Liver | 877, 891, 908 |
| abstract_inverted_index.Lungs | 976 |
| abstract_inverted_index.Major | 357 |
| abstract_inverted_index.Minor | 298, 321, 326 |
| abstract_inverted_index.NSCLC | 934, 992 |
| abstract_inverted_index.RIDER | 936, 994 |
| abstract_inverted_index.ROIs? | 775 |
| abstract_inverted_index.Score | 267 |
| abstract_inverted_index.about | 506, 771, 787 |
| abstract_inverted_index.added | 210, 1032, 1041 |
| abstract_inverted_index.agree | 317 |
| abstract_inverted_index.based | 70, 451 |
| abstract_inverted_index.brain | 805 |
| abstract_inverted_index.could | 288 |
| abstract_inverted_index.cover | 729 |
| abstract_inverted_index.data, | 13 |
| abstract_inverted_index.data. | 21, 60 |
| abstract_inverted_index.edits | 299, 322, 327 |
| abstract_inverted_index.ended | 777, 795 |
| abstract_inverted_index.file, | 489, 493 |
| abstract_inverted_index.file. | 683 |
| abstract_inverted_index.files | 442 |
| abstract_inverted_index.first | 206 |
| abstract_inverted_index.goal, | 64 |
| abstract_inverted_index.grade | 273 |
| abstract_inverted_index.label | 737 |
| abstract_inverted_index.model | 176, 432, 815, 834, 849, 871, 885, 902, 917, 942, 945, 951, 970, 1000, 1016 |
| abstract_inverted_index.often | 14 |
| abstract_inverted_index.other | 17 |
| abstract_inverted_index.rated | 228 |
| abstract_inverted_index.rates | 707, 756 |
| abstract_inverted_index.scan. | 543 |
| abstract_inverted_index.scans | 828, 863, 880, 896, 912, 929, 961, 986, 1010 |
| abstract_inverted_index.split | 600 |
| abstract_inverted_index.start | 379, 585, 590 |
| abstract_inverted_index.study | 792 |
| abstract_inverted_index.task. | 420 |
| abstract_inverted_index.tasks | 78, 715 |
| abstract_inverted_index.their | 509 |
| abstract_inverted_index.there | 723 |
| abstract_inverted_index.these | 38 |
| abstract_inverted_index.those | 329 |
| abstract_inverted_index.tumor | 806, 844 |
| abstract_inverted_index.types | 18 |
| abstract_inverted_index.with, | 249 |
| abstract_inverted_index.would | 376 |
| abstract_inverted_index.~10%, | 462 |
| abstract_inverted_index.(i.e., | 284 |
| abstract_inverted_index.(rad*) | 474 |
| abstract_inverted_index.Column | 525 |
| abstract_inverted_index.Folder | 407 |
| abstract_inverted_index.Likert | 122, 233, 266, 518, 712, 764 |
| abstract_inverted_index.Links: | 814, 833, 848, 870, 884, 901, 916, 941, 969, 999, 1015 |
| abstract_inverted_index.Manual | 149 |
| abstract_inverted_index.PET-CT | 938, 996 |
| abstract_inverted_index.PET/CT | 827, 985 |
| abstract_inverted_index.Scale, | 234 |
| abstract_inverted_index.Tumor, | 856 |
| abstract_inverted_index.agree' | 129, 248 |
| abstract_inverted_index.agreed | 670 |
| abstract_inverted_index.breast | 824 |
| abstract_inverted_index.called | 545 |
| abstract_inverted_index.cancer | 11, 20 |
| abstract_inverted_index.column | 691, 740 |
| abstract_inverted_index.common | 422 |
| abstract_inverted_index.create | 37 |
| abstract_inverted_index.edema, | 809 |
| abstract_inverted_index.edits. | 358 |
| abstract_inverted_index.effect | 350 |
| abstract_inverted_index.effort | 34 |
| abstract_inverted_index.ensure | 187, 369 |
| abstract_inverted_index.expert | 170 |
| abstract_inverted_index.files, | 450 |
| abstract_inverted_index.folder | 423 |
| abstract_inverted_index.format | 436 |
| abstract_inverted_index.github | 817, 836, 851, 873, 887, 904, 919, 948, 972, 1002, 1018 |
| abstract_inverted_index.graded | 114 |
| abstract_inverted_index.image, | 513 |
| abstract_inverted_index.images | 48, 701, 750 |
| abstract_inverted_index.judges | 333 |
| abstract_inverted_index.labels | 719 |
| abstract_inverted_index.linked | 15 |
| abstract_inverted_index.manual | 447 |
| abstract_inverted_index.models | 71 |
| abstract_inverted_index.nnUNet | 68 |
| abstract_inverted_index.prefer | 377 |
| abstract_inverted_index.public | 80 |
| abstract_inverted_index.rating | 727 |
| abstract_inverted_index.record | 140, 202 |
| abstract_inverted_index.review | 332 |
| abstract_inverted_index.scale. | 123, 713, 765 |
| abstract_inverted_index.scans? | 793 |
| abstract_inverted_index.scores | 150, 1052 |
| abstract_inverted_index.stage. | 207 |
| abstract_inverted_index.within | 182 |
| abstract_inverted_index.years. | 603 |
| abstract_inverted_index.5-point | 232 |
| abstract_inverted_index.Breast, | 840 |
| abstract_inverted_index.Columns | 500 |
| abstract_inverted_index.Commons | 3 |
| abstract_inverted_index.Imaging | 1 |
| abstract_inverted_index.Kidney, | 855 |
| abstract_inverted_index.Lesions | 893 |
| abstract_inverted_index.Neither | 316 |
| abstract_inverted_index.Nodules | 925, 957 |
| abstract_inverted_index.Segment | 803, 819, 838, 853, 875, 889, 906, 921, 953, 974, 1004 |
| abstract_inverted_index.Version | 215, 262 |
| abstract_inverted_index.appears | 692, 741 |
| abstract_inverted_index.augment | 53 |
| abstract_inverted_index.between | 608 |
| abstract_inverted_index.change) | 294 |
| abstract_inverted_index.current | 311 |
| abstract_inverted_index.dataset | 166 |
| abstract_inverted_index.expense | 32 |
| abstract_inverted_index.folder. | 647, 665 |
| abstract_inverted_index.format. | 458, 640, 658 |
| abstract_inverted_index.further | 62 |
| abstract_inverted_index.images. | 156 |
| abstract_inverted_index.imaging | 12 |
| abstract_inverted_index.lesions | 822, 979 |
| abstract_inverted_index.limited | 27 |
| abstract_inverted_index.linking | 481 |
| abstract_inverted_index.medical | 219 |
| abstract_inverted_index.minimal | 349 |
| abstract_inverted_index.model's | 94 |
| abstract_inverted_index.outcome | 353 |
| abstract_inverted_index.output, | 133, 621, 722 |
| abstract_inverted_index.provide | 49, 680 |
| abstract_inverted_index.quality | 116, 275, 393, 709, 761 |
| abstract_inverted_index.ratings | 495, 519 |
| abstract_inverted_index.related | 510 |
| abstract_inverted_index.roughly | 96 |
| abstract_inverted_index.scratch | 343, 382 |
| abstract_inverted_index.segment | 696, 745, 758 |
| abstract_inverted_index.several | 67 |
| abstract_inverted_index.stages. | 197 |
| abstract_inverted_index.student | 220 |
| abstract_inverted_index.tissue, | 842 |
| abstract_inverted_index.trained | 66 |
| abstract_inverted_index.variety | 74 |
| abstract_inverted_index.version | 952 |
| abstract_inverted_index.weights | 943, 946 |
| abstract_inverted_index.without | 293 |
| abstract_inverted_index.Disagree | 355 |
| abstract_inverted_index.FDG-avid | 821, 978 |
| abstract_inverted_index.Improved | 950 |
| abstract_inverted_index.Manually | 145 |
| abstract_inverted_index.Overview | 801 |
| abstract_inverted_index.Prostate | 1006 |
| abstract_inverted_index.Reviewer | 577 |
| abstract_inverted_index.Strongly | 280, 384 |
| abstract_inverted_index.Versions | 198, 208 |
| abstract_inverted_index.analysis | 45 |
| abstract_inverted_index.analyzed | 439 |
| abstract_inverted_index.assigned | 103 |
| abstract_inverted_index.brain-mr | 1024 |
| abstract_inverted_index.category | 360, 389 |
| abstract_inverted_index.comments | 521, 770, 786, 1036 |
| abstract_inverted_index.connects | 6 |
| abstract_inverted_index.contains | 429, 446, 504 |
| abstract_inverted_index.contrast | 860 |
| abstract_inverted_index.datasets | 81 |
| abstract_inverted_index.details, | 174 |
| abstract_inverted_index.disagree | 319, 385 |
| abstract_inverted_index.enhanced | 861 |
| abstract_inverted_index.existing | 54 |
| abstract_inverted_index.expected | 346 |
| abstract_inverted_index.filename | 632, 650 |
| abstract_inverted_index.findings | 789 |
| abstract_inverted_index.generate | 86 |
| abstract_inverted_index.manually | 575 |
| abstract_inverted_index.metadata | 505, 541, 556, 565 |
| abstract_inverted_index.multiple | 718 |
| abstract_inverted_index.provided | 163, 181, 252 |
| abstract_inverted_index.provides | 141 |
| abstract_inverted_index.publicly | 9 |
| abstract_inverted_index.question | 778, 796 |
| abstract_inverted_index.records. | 212, 265 |
| abstract_inverted_index.regions: | 807 |
| abstract_inverted_index.required | 35, 367 |
| abstract_inverted_index.reviewed | 222, 576, 618 |
| abstract_inverted_index.reviewer | 135, 668, 706, 755, 781, 799, 1051 |
| abstract_inverted_index.specific | 418 |
| abstract_inverted_index.starting | 341 |
| abstract_inverted_index.strongly | 669 |
| abstract_inverted_index.training | 177 |
| abstract_inverted_index.utilized | 259, 627 |
| abstract_inverted_index.validate | 92 |
| abstract_inverted_index.verified | 168 |
| abstract_inverted_index.weights, | 816, 835, 850, 872, 886, 903, 918, 971, 1001, 1017 |
| abstract_inverted_index.‘ne’ | 592 |
| abstract_inverted_index.'strongly | 128, 247 |
| abstract_inverted_index.Challenge | 968 |
| abstract_inverted_index.Changelog | 1019 |
| abstract_inverted_index.DICOM-SEG | 435, 457 |
| abstract_inverted_index.DICOM-seg | 639, 657 |
| abstract_inverted_index.PatientID | 537, 538 |
| abstract_inverted_index.SPIE-AAPM | 965 |
| abstract_inverted_index.Structure | 408 |
| abstract_inverted_index.Stylistic | 304 |
| abstract_inverted_index.TCGA-LIHC | 883, 915 |
| abstract_inverted_index.TCGA-LUAD | 939, 997 |
| abstract_inverted_index.TCGA-LUSC | 940, 998 |
| abstract_inverted_index.UPENN-GBM | 813 |
| abstract_inverted_index.Unusable. | 387 |
| abstract_inverted_index.Use-as-is | 283 |
| abstract_inverted_index.accurate? | 689, 738 |
| abstract_inverted_index.automatic | 396 |
| abstract_inverted_index.available | 10 |
| abstract_inverted_index.corrected | 136, 146, 253, 448, 491 |
| abstract_inverted_index.correctly | 1029 |
| abstract_inverted_index.directory | 428, 445 |
| abstract_inverted_index.enhancing | 810 |
| abstract_inverted_index.fraction, | 461 |
| abstract_inverted_index.increased | 41 |
| abstract_inverted_index.indicates | 361, 390 |
| abstract_inverted_index.inspected | 153 |
| abstract_inverted_index.manually. | 39 |
| abstract_inverted_index.necessary | 364 |
| abstract_inverted_index.necrosis, | 808 |
| abstract_inverted_index.performed | 471 |
| abstract_inverted_index.predicted | 687, 735, 774 |
| abstract_inverted_index.radiology | 47, 76 |
| abstract_inverted_index.reviewer. | 582 |
| abstract_inverted_index.reviewers | 271 |
| abstract_inverted_index.segments, | 676 |
| abstract_inverted_index.structure | 424 |
| abstract_inverted_index.treatment | 292, 352 |
| abstract_inverted_index.unusable. | 404 |
| abstract_inverted_index.‘rad’ | 587 |
| abstract_inverted_index.(3mm-30mm) | 926, 958 |
| abstract_inverted_index.AI-derived | 161 |
| abstract_inverted_index.Collection | 155, 527 |
| abstract_inverted_index.Guidelines | 269 |
| abstract_inverted_index.ProstateX, | 1013 |
| abstract_inverted_index.QIN-Breast | 829, 832 |
| abstract_inverted_index.TCGA-KICH, | 868 |
| abstract_inverted_index.TCGA-KIRC, | 866 |
| abstract_inverted_index.TCGA-KIRP, | 867 |
| abstract_inverted_index.Validation | 569 |
| abstract_inverted_index.acceptable | 314 |
| abstract_inverted_index.additional | 211, 264 |
| abstract_inverted_index.annotation | 59 |
| abstract_inverted_index.associated | 184 |
| abstract_inverted_index.clinically | 285, 308 |
| abstract_inverted_index.collection | 414, 441, 533 |
| abstract_inverted_index.corrected. | 468 |
| abstract_inverted_index.correction | 682 |
| abstract_inverted_index.correlates | 415 |
| abstract_inverted_index.difference | 607 |
| abstract_inverted_index.important. | 309 |
| abstract_inverted_index.manuscript | 185 |
| abstract_inverted_index.necessary. | 303, 325 |
| abstract_inverted_index.non-expect | 588 |
| abstract_inverted_index.non-expert | 251, 256, 616, 624 |
| abstract_inverted_index.prediction | 636, 654 |
| abstract_inverted_index.reviewers. | 524 |
| abstract_inverted_index.structural | 843 |
| abstract_inverted_index.true/false | 570 |
| abstract_inverted_index.validation | 106, 241 |
| abstract_inverted_index.CPTAC-CCRCC | 869 |
| abstract_inverted_index.Collection: | 812, 831, 846, 865, 882, 898, 914, 1012 |
| abstract_inverted_index.Corrections | 469 |
| abstract_inverted_index.Definition: | 268 |
| abstract_inverted_index.Description | 526 |
| abstract_inverted_index.Radiologist | 583 |
| abstract_inverted_index.acceptable, | 286 |
| abstract_inverted_index.annotations | 28, 162, 179, 397 |
| abstract_inverted_index.collections | 25, 56 |
| abstract_inverted_index.lung-ct.zip | 920 |
| abstract_inverted_index.methodology | 606 |
| abstract_inverted_index.non-experts | 476 |
| abstract_inverted_index.opportunity | 51 |
| abstract_inverted_index.prediction, | 455 |
| abstract_inverted_index.predictions | 101, 119, 226, 238, 433, 466 |
| abstract_inverted_index.radiologist | 113, 473, 490, 494, 1035 |
| abstract_inverted_index.researchers | 7 |
| abstract_inverted_index.significant | 373 |
| abstract_inverted_index.transformed | 1028 |
| abstract_inverted_index.(non-expert) | 221 |
| abstract_inverted_index.Collections: | 931, 963, 988 |
| abstract_inverted_index.Description: | 804, 820, 839, 854, 876, 890, 907, 922, 954, 975, 1005 |
| abstract_inverted_index.QIN-LUNG-CT, | 964 |
| abstract_inverted_index.brain-mr.zip | 802 |
| abstract_inverted_index.capabilities | 42 |
| abstract_inverted_index.collections, | 217 |
| abstract_inverted_index.collections. | 90 |
| abstract_inverted_index.correctness, | 370 |
| abstract_inverted_index.differences, | 305 |
| abstract_inverted_index.liver-ct.zip | 874 |
| abstract_inverted_index.liver-mr.zip | 905 |
| abstract_inverted_index.lung2-ct.zip | 949 |
| abstract_inverted_index.performance, | 95 |
| abstract_inverted_index.performance. | 498 |
| abstract_inverted_index.radiologists | 171 |
| abstract_inverted_index.segmentation | 77, 312, 419, 449, 488, 492, 708 |
| abstract_inverted_index.study/series | 483 |
| abstract_inverted_index.sufficiently | 372 |
| abstract_inverted_index.transparency | 188 |
| abstract_inverted_index.HCC-TACE-SEG, | 899 |
| abstract_inverted_index.Radiogenomics | 935, 993 |
| abstract_inverted_index.breast-mr.zip | 837 |
| abstract_inverted_index.kidney-ct.zip | 852 |
| abstract_inverted_index.liver2-ct.zip | 888 |
| abstract_inverted_index.segmentation. | 138 |
| abstract_inverted_index.segmentations | 87, 1025, 1044, 1049 |
| abstract_inverted_index.AISegmentation | 630 |
| abstract_inverted_index.Anti-PD-1-Lung | 932, 990 |
| abstract_inverted_index.Fibroglandular | 841 |
| abstract_inverted_index.LUNG-PET-CT-Dx | 933, 991 |
| abstract_inverted_index.qa-results.csv | 478, 499, 502, 1038 |
| abstract_inverted_index.segmentations, | 144, 147, 508 |
| abstract_inverted_index.segmentations. | 254, 278 |
| abstract_inverted_index.{SEGMENT_NAME} | 736 |
| abstract_inverted_index.AimiProjectYear | 593, 703, 752 |
| abstract_inverted_index.board-certified | 112 |
| abstract_inverted_index.prostate-mr.zip | 1003 |
| abstract_inverted_index.StudyInstanceUID | 551, 552 |
| abstract_inverted_index.reproducibility. | 190 |
| abstract_inverted_index.SeriesInstanceUID | 560, 561 |
| abstract_inverted_index.reviewer-corrected | 653 |
| abstract_inverted_index.ACRIN-NSCLC-FDG-PET | 989 |
| abstract_inverted_index.lung-fdg-pet-ct.zip | 973 |
| abstract_inverted_index.ai-segmentations-dcm | 426, 646 |
| abstract_inverted_index.qa-segmentations-dcm | 443, 664 |
| abstract_inverted_index.CorrectedSegmentation | 648 |
| abstract_inverted_index.breast-fdg-pet-ct.zip | 818 |
| abstract_inverted_index.Prostate-MRI-US-Biopsy | 1014 |
| abstract_inverted_index.duke-breast-cancer-mri | 847 |
| abstract_inverted_index.COLORECTAL-LIVER-METASTASES | 900 |
| abstract_inverted_index.(IDC)(https://imaging.datacommons.cancer.gov/) | 4 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 103 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile |