IMG-43. Non-Invasive Prediction of Malignant Transformation in Grade 2 IDH-Mutant Gliomas Using Radiomics and Machine Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/neuonc/noaf201.1122
Grade 2 IDH mutant gliomas are known to undergo malignant transformation (MT). Early prediction of this transformation remains a significant clinical challenge. Radiomics, the extraction of high-dimensional imaging features, has emerged as a promising tool for non-invasive tumor characterization. Our study looked to implement quantitative radiomics analyses to identify textural information from clinical imaging that might enhance the prediction of MT in grade 2 IDH-mutant gliomas. We conducted a retrospective analysis of institutional (UCLA) and public (UCSF-PDGM) datasets with histologically confirmed IDH-mutant gliomas. Institutional dataset included patients underwent serial magnetic resonance imaging (MRI) and had pathologic clinical progression and/or transformation with at least one repeat biopsy/surgery. Radiomic features were extracted from T1-subtraction maps, T2-weighted images, and apparent diffusion coefficient (ADC) maps from diffusion MRI scans. The T2-hyperintense lesion was segmented, excluding necrosis, using NS-HGlio (Neosoma Inc, Groton, MA). UCLA patients were categorized based on the presence or absence of MT, defined as progression from WHO grade 2 to grade 3 or 4 by histology at repeat biopsy/surgery. Machine learning models, including random forest and support vector machines, were trained on 75% UCSF-PDGM dataset to classify grade 2 versus grade 3/4 tumors, validated on the remaining 25%. The model was used to generate a radiomics risk-score to predict MT in the UCLA dataset, evaluated using the ROC analysis. Model achieved AUC of 0.814 (CI: 0.73--0.90) on the UCSF training set (n = 77). On the UCSF test set (n = 26), sensitivity was 0.93, specificity 0.92, with AUC of 0.92 (CI: 0.80–1.00). Evaluation on the independent dataset of UCLA patients at the second surgical timepoint (n = 59) demonstrated a sensitivity of 0.69, specificity of 0.76, and AUC of 0.73 (CI: 0.61–0.84). Radiomics may enable non-invasive prediction of MT in IDH-mutant gliomas, outperforming conventional clinical models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/neuonc/noaf201.1122
- https://academic.oup.com/neuro-oncology/article-pdf/27/Supplement_5/v282/65256603/noaf201.1122.pdf
- OA Status
- bronze
- OpenAlex ID
- https://openalex.org/W4416085691
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416085691Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/neuonc/noaf201.1122Digital Object Identifier
- Title
-
IMG-43. Non-Invasive Prediction of Malignant Transformation in Grade 2 IDH-Mutant Gliomas Using Radiomics and Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-01Full publication date if available
- Authors
-
S. Indira Gandhi, An‐Jou Liang, Ashley Teraishi, Jingwen Yao, Albert Lai, Benjamin M. EllingsonList of authors in order
- Landing page
-
https://doi.org/10.1093/neuonc/noaf201.1122Publisher landing page
- PDF URL
-
https://academic.oup.com/neuro-oncology/article-pdf/27/Supplement_5/v282/65256603/noaf201.1122.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/neuro-oncology/article-pdf/27/Supplement_5/v282/65256603/noaf201.1122.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416085691 |
|---|---|
| doi | https://doi.org/10.1093/neuonc/noaf201.1122 |
| ids.doi | https://doi.org/10.1093/neuonc/noaf201.1122 |
| ids.openalex | https://openalex.org/W4416085691 |
| fwci | |
| type | article |
| title | IMG-43. Non-Invasive Prediction of Malignant Transformation in Grade 2 IDH-Mutant Gliomas Using Radiomics and Machine Learning |
| biblio.issue | Supplement_5 |
| biblio.volume | 27 |
| biblio.last_page | v283 |
| biblio.first_page | v282 |
| is_xpac | False |
| apc_list.value | 4612 |
| apc_list.currency | USD |
| apc_list.value_usd | 4612 |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1093/neuonc/noaf201.1122 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S106908163 |
| locations[0].source.issn | 1522-8517, 1523-5866 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1522-8517 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Neuro-Oncology |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | https://academic.oup.com/neuro-oncology/article-pdf/27/Supplement_5/v282/65256603/noaf201.1122.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neuro-Oncology |
| locations[0].landing_page_url | https://doi.org/10.1093/neuonc/noaf201.1122 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056776890 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | S. Indira Gandhi |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[0].affiliations[0].raw_affiliation_string | University of California, Los Angeles, Los Angeles, USA |
| authorships[0].institutions[0].id | https://openalex.org/I161318765 |
| authorships[0].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Los Angeles |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sani Gandhi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of California, Los Angeles, Los Angeles, USA |
| authorships[1].author.id | https://openalex.org/A5045679854 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-5305-830X |
| authorships[1].author.display_name | An‐Jou Liang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California, Los Angeles, Los Angeles, USA |
| authorships[1].institutions[0].id | https://openalex.org/I161318765 |
| authorships[1].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Los Angeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andrea Liang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California, Los Angeles, Los Angeles, USA |
| authorships[2].author.id | https://openalex.org/A5093242298 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-3442-8109 |
| authorships[2].author.display_name | Ashley Teraishi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[2].affiliations[0].raw_affiliation_string | University of California, Los Angeles, Los Angeles, USA |
| authorships[2].institutions[0].id | https://openalex.org/I161318765 |
| authorships[2].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Los Angeles |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ashley Teraishi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of California, Los Angeles, Los Angeles, USA |
| authorships[3].author.id | https://openalex.org/A5030410351 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8828-1841 |
| authorships[3].author.display_name | Jingwen Yao |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[3].affiliations[0].raw_affiliation_string | University of California, Los Angeles, Los Angeles, USA |
| authorships[3].institutions[0].id | https://openalex.org/I161318765 |
| authorships[3].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Los Angeles |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingwen Yao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of California, Los Angeles, Los Angeles, USA |
| authorships[4].author.id | https://openalex.org/A5046758575 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7265-2986 |
| authorships[4].author.display_name | Albert Lai |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[4].affiliations[0].raw_affiliation_string | University of California, Los Angeles, Los Angeles, USA |
| authorships[4].institutions[0].id | https://openalex.org/I161318765 |
| authorships[4].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, Los Angeles |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Albert Lai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of California, Los Angeles, Los Angeles, USA |
| authorships[5].author.id | https://openalex.org/A5025351354 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2764-6640 |
| authorships[5].author.display_name | Benjamin M. Ellingson |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[5].affiliations[0].raw_affiliation_string | University of California, Los Angeles, Los Angeles, USA |
| authorships[5].institutions[0].id | https://openalex.org/I161318765 |
| authorships[5].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of California, Los Angeles |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Benjamin Ellingson |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of California, Los Angeles, Los Angeles, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/neuro-oncology/article-pdf/27/Supplement_5/v282/65256603/noaf201.1122.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-11T00:00:00 |
| display_name | IMG-43. Non-Invasive Prediction of Malignant Transformation in Grade 2 IDH-Mutant Gliomas Using Radiomics and Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:28:59.258423 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/neuonc/noaf201.1122 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S106908163 |
| best_oa_location.source.issn | 1522-8517, 1523-5866 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1522-8517 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Neuro-Oncology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://academic.oup.com/neuro-oncology/article-pdf/27/Supplement_5/v282/65256603/noaf201.1122.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neuro-Oncology |
| best_oa_location.landing_page_url | https://doi.org/10.1093/neuonc/noaf201.1122 |
| primary_location.id | doi:10.1093/neuonc/noaf201.1122 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S106908163 |
| primary_location.source.issn | 1522-8517, 1523-5866 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1522-8517 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Neuro-Oncology |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | https://academic.oup.com/neuro-oncology/article-pdf/27/Supplement_5/v282/65256603/noaf201.1122.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neuro-Oncology |
| primary_location.landing_page_url | https://doi.org/10.1093/neuonc/noaf201.1122 |
| publication_date | 2025-11-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 2, 64, 157, 187 |
| abstract_inverted_index.3 | 160 |
| abstract_inverted_index.4 | 162 |
| abstract_inverted_index.= | 231, 239, 266 |
| abstract_inverted_index.a | 19, 33, 69, 203, 269 |
| abstract_inverted_index.(n | 230, 238, 265 |
| abstract_inverted_index.MT | 61, 208, 288 |
| abstract_inverted_index.On | 233 |
| abstract_inverted_index.We | 67 |
| abstract_inverted_index.as | 32, 152 |
| abstract_inverted_index.at | 102, 165, 260 |
| abstract_inverted_index.by | 163 |
| abstract_inverted_index.in | 62, 209, 289 |
| abstract_inverted_index.of | 15, 26, 60, 72, 149, 221, 248, 257, 271, 274, 278, 287 |
| abstract_inverted_index.on | 144, 180, 193, 225, 253 |
| abstract_inverted_index.or | 147, 161 |
| abstract_inverted_index.to | 8, 43, 48, 158, 184, 201, 206 |
| abstract_inverted_index.3/4 | 190 |
| abstract_inverted_index.59) | 267 |
| abstract_inverted_index.75% | 181 |
| abstract_inverted_index.AUC | 220, 247, 277 |
| abstract_inverted_index.IDH | 3 |
| abstract_inverted_index.MRI | 124 |
| abstract_inverted_index.MT, | 150 |
| abstract_inverted_index.Our | 40 |
| abstract_inverted_index.ROC | 216 |
| abstract_inverted_index.The | 126, 197 |
| abstract_inverted_index.WHO | 155 |
| abstract_inverted_index.and | 75, 94, 116, 174, 276 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.for | 36 |
| abstract_inverted_index.had | 95 |
| abstract_inverted_index.has | 30 |
| abstract_inverted_index.may | 283 |
| abstract_inverted_index.one | 104 |
| abstract_inverted_index.set | 229, 237 |
| abstract_inverted_index.the | 24, 58, 145, 194, 210, 215, 226, 234, 254, 261 |
| abstract_inverted_index.was | 129, 199, 242 |
| abstract_inverted_index.(CI: | 223, 250, 280 |
| abstract_inverted_index.0.73 | 279 |
| abstract_inverted_index.0.92 | 249 |
| abstract_inverted_index.25%. | 196 |
| abstract_inverted_index.26), | 240 |
| abstract_inverted_index.77). | 232 |
| abstract_inverted_index.Inc, | 136 |
| abstract_inverted_index.MA). | 138 |
| abstract_inverted_index.UCLA | 139, 211, 258 |
| abstract_inverted_index.UCSF | 227, 235 |
| abstract_inverted_index.from | 52, 111, 122, 154 |
| abstract_inverted_index.maps | 121 |
| abstract_inverted_index.test | 236 |
| abstract_inverted_index.that | 55 |
| abstract_inverted_index.this | 16 |
| abstract_inverted_index.tool | 35 |
| abstract_inverted_index.used | 200 |
| abstract_inverted_index.were | 109, 141, 178 |
| abstract_inverted_index.with | 79, 101, 246 |
| abstract_inverted_index.(ADC) | 120 |
| abstract_inverted_index.(MRI) | 93 |
| abstract_inverted_index.(MT). | 12 |
| abstract_inverted_index.0.69, | 272 |
| abstract_inverted_index.0.76, | 275 |
| abstract_inverted_index.0.814 | 222 |
| abstract_inverted_index.0.92, | 245 |
| abstract_inverted_index.0.93, | 243 |
| abstract_inverted_index.Early | 13 |
| abstract_inverted_index.Grade | 1 |
| abstract_inverted_index.Model | 218 |
| abstract_inverted_index.based | 143 |
| abstract_inverted_index.grade | 63, 156, 159, 186, 189 |
| abstract_inverted_index.known | 7 |
| abstract_inverted_index.least | 103 |
| abstract_inverted_index.maps, | 113 |
| abstract_inverted_index.might | 56 |
| abstract_inverted_index.model | 198 |
| abstract_inverted_index.study | 41 |
| abstract_inverted_index.tumor | 38 |
| abstract_inverted_index.using | 133, 214 |
| abstract_inverted_index.(UCLA) | 74 |
| abstract_inverted_index.and/or | 99 |
| abstract_inverted_index.enable | 284 |
| abstract_inverted_index.forest | 173 |
| abstract_inverted_index.lesion | 128 |
| abstract_inverted_index.looked | 42 |
| abstract_inverted_index.mutant | 4 |
| abstract_inverted_index.public | 76 |
| abstract_inverted_index.random | 172 |
| abstract_inverted_index.repeat | 105, 166 |
| abstract_inverted_index.scans. | 125 |
| abstract_inverted_index.second | 262 |
| abstract_inverted_index.serial | 89 |
| abstract_inverted_index.vector | 176 |
| abstract_inverted_index.versus | 188 |
| abstract_inverted_index.Groton, | 137 |
| abstract_inverted_index.Machine | 168 |
| abstract_inverted_index.absence | 148 |
| abstract_inverted_index.dataset | 85, 183, 256 |
| abstract_inverted_index.defined | 151 |
| abstract_inverted_index.emerged | 31 |
| abstract_inverted_index.enhance | 57 |
| abstract_inverted_index.gliomas | 5 |
| abstract_inverted_index.images, | 115 |
| abstract_inverted_index.imaging | 28, 54, 92 |
| abstract_inverted_index.models, | 170 |
| abstract_inverted_index.models. | 295 |
| abstract_inverted_index.predict | 207 |
| abstract_inverted_index.remains | 18 |
| abstract_inverted_index.support | 175 |
| abstract_inverted_index.trained | 179 |
| abstract_inverted_index.tumors, | 191 |
| abstract_inverted_index.undergo | 9 |
| abstract_inverted_index.(Neosoma | 135 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.NS-HGlio | 134 |
| abstract_inverted_index.Radiomic | 107 |
| abstract_inverted_index.achieved | 219 |
| abstract_inverted_index.analyses | 47 |
| abstract_inverted_index.analysis | 71 |
| abstract_inverted_index.apparent | 117 |
| abstract_inverted_index.classify | 185 |
| abstract_inverted_index.clinical | 21, 53, 97, 294 |
| abstract_inverted_index.dataset, | 212 |
| abstract_inverted_index.datasets | 78 |
| abstract_inverted_index.features | 108 |
| abstract_inverted_index.generate | 202 |
| abstract_inverted_index.gliomas, | 291 |
| abstract_inverted_index.gliomas. | 66, 83 |
| abstract_inverted_index.identify | 49 |
| abstract_inverted_index.included | 86 |
| abstract_inverted_index.learning | 169 |
| abstract_inverted_index.magnetic | 90 |
| abstract_inverted_index.patients | 87, 140, 259 |
| abstract_inverted_index.presence | 146 |
| abstract_inverted_index.surgical | 263 |
| abstract_inverted_index.textural | 50 |
| abstract_inverted_index.training | 228 |
| abstract_inverted_index.Radiomics | 282 |
| abstract_inverted_index.UCSF-PDGM | 182 |
| abstract_inverted_index.analysis. | 217 |
| abstract_inverted_index.conducted | 68 |
| abstract_inverted_index.confirmed | 81 |
| abstract_inverted_index.diffusion | 118, 123 |
| abstract_inverted_index.evaluated | 213 |
| abstract_inverted_index.excluding | 131 |
| abstract_inverted_index.extracted | 110 |
| abstract_inverted_index.features, | 29 |
| abstract_inverted_index.histology | 164 |
| abstract_inverted_index.implement | 44 |
| abstract_inverted_index.including | 171 |
| abstract_inverted_index.machines, | 177 |
| abstract_inverted_index.malignant | 10 |
| abstract_inverted_index.necrosis, | 132 |
| abstract_inverted_index.promising | 34 |
| abstract_inverted_index.radiomics | 46, 204 |
| abstract_inverted_index.remaining | 195 |
| abstract_inverted_index.resonance | 91 |
| abstract_inverted_index.timepoint | 264 |
| abstract_inverted_index.underwent | 88 |
| abstract_inverted_index.validated | 192 |
| abstract_inverted_index.Evaluation | 252 |
| abstract_inverted_index.IDH-mutant | 65, 82, 290 |
| abstract_inverted_index.Radiomics, | 23 |
| abstract_inverted_index.challenge. | 22 |
| abstract_inverted_index.extraction | 25 |
| abstract_inverted_index.pathologic | 96 |
| abstract_inverted_index.prediction | 14, 59, 286 |
| abstract_inverted_index.risk-score | 205 |
| abstract_inverted_index.segmented, | 130 |
| abstract_inverted_index.(UCSF-PDGM) | 77 |
| abstract_inverted_index.0.73--0.90) | 224 |
| abstract_inverted_index.T2-weighted | 114 |
| abstract_inverted_index.categorized | 142 |
| abstract_inverted_index.coefficient | 119 |
| abstract_inverted_index.independent | 255 |
| abstract_inverted_index.information | 51 |
| abstract_inverted_index.progression | 98, 153 |
| abstract_inverted_index.sensitivity | 241, 270 |
| abstract_inverted_index.significant | 20 |
| abstract_inverted_index.specificity | 244, 273 |
| abstract_inverted_index.conventional | 293 |
| abstract_inverted_index.demonstrated | 268 |
| abstract_inverted_index.non-invasive | 37, 285 |
| abstract_inverted_index.quantitative | 45 |
| abstract_inverted_index.0.61–0.84). | 281 |
| abstract_inverted_index.0.80–1.00). | 251 |
| abstract_inverted_index.Institutional | 84 |
| abstract_inverted_index.institutional | 73 |
| abstract_inverted_index.outperforming | 292 |
| abstract_inverted_index.retrospective | 70 |
| abstract_inverted_index.T1-subtraction | 112 |
| abstract_inverted_index.histologically | 80 |
| abstract_inverted_index.transformation | 11, 17, 100 |
| abstract_inverted_index.T2-hyperintense | 127 |
| abstract_inverted_index.biopsy/surgery. | 106, 167 |
| abstract_inverted_index.high-dimensional | 27 |
| abstract_inverted_index.characterization. | 39 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |