Immune status assessment based on plasma proteomics with meta graph convolutional networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s12864-025-11537-6
Plasma proteins, especially immune-related proteins, are vital for assessing immune health and predicting disease risks. Despite their significance, the link between these proteins and systemic immune function remains unclear. To bridge this gap, researchers developed ProMetaGCN, a model integrating meta-learning, graph convolutional networks, and protein-protein interaction (PPI) data to evaluate immune status via plasma proteomics. This framework identified 309 immune-related factors with associated biological functions and pathways. Using six machine learning methods, four algorithms (Random Forest, LightGBM, XGBoost, Lasso) were selected for immune profiling and aging analysis, revealing ADAMTS13, GDF15, and SERPINF2 as key biomarkers. Validation across two COVID-19 cohorts confirmed the model's robustness, showing immune status correlates with infection progression and recovery. Furthermore, the study proposed ImmuneAgeGap, a novel metric linking immune profiles to survival rates in non-small-cell lung cancer (NSCLC) patients. These insights advance personalized immune health strategies and disease prevention.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12864-025-11537-6
- https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-025-11537-6
- OA Status
- gold
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409338687
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409338687Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12864-025-11537-6Digital Object Identifier
- Title
-
Immune status assessment based on plasma proteomics with meta graph convolutional networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-10Full publication date if available
- Authors
-
Min Zhang, Nan Xu, Qi Cheng, Jing Ye, Shiwei Wu, Haoliang Liu, Chengkui Zhao, Lei Yu, Weixing FengList of authors in order
- Landing page
-
https://doi.org/10.1186/s12864-025-11537-6Publisher landing page
- PDF URL
-
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-025-11537-6Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-025-11537-6Direct OA link when available
- Concepts
-
Proteomics, Biology, Immune system, Computational biology, DNA microarray, Meta-analysis, Bioinformatics, Immunology, Genetics, Gene, Internal medicine, Medicine, Gene expressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409338687 |
|---|---|
| doi | https://doi.org/10.1186/s12864-025-11537-6 |
| ids.doi | https://doi.org/10.1186/s12864-025-11537-6 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40211143 |
| ids.openalex | https://openalex.org/W4409338687 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000276 |
| mesh[1].descriptor_ui | D000086382 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | immunology |
| mesh[1].descriptor_name | COVID-19 |
| mesh[2].qualifier_ui | Q000097 |
| mesh[2].descriptor_ui | D000086382 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | blood |
| mesh[2].descriptor_name | COVID-19 |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D040901 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Proteomics |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000086402 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | SARS-CoV-2 |
| mesh[5].qualifier_ui | Q000276 |
| mesh[5].descriptor_ui | D008175 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | immunology |
| mesh[5].descriptor_name | Lung Neoplasms |
| mesh[6].qualifier_ui | Q000097 |
| mesh[6].descriptor_ui | D008175 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | blood |
| mesh[6].descriptor_name | Lung Neoplasms |
| mesh[7].qualifier_ui | Q000401 |
| mesh[7].descriptor_ui | D008175 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | mortality |
| mesh[7].descriptor_name | Lung Neoplasms |
| mesh[8].qualifier_ui | Q000276 |
| mesh[8].descriptor_ui | D001798 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | immunology |
| mesh[8].descriptor_name | Blood Proteins |
| mesh[9].qualifier_ui | Q000276 |
| mesh[9].descriptor_ui | D002289 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | immunology |
| mesh[9].descriptor_name | Carcinoma, Non-Small-Cell Lung |
| mesh[10].qualifier_ui | Q000097 |
| mesh[10].descriptor_ui | D002289 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | blood |
| mesh[10].descriptor_name | Carcinoma, Non-Small-Cell Lung |
| mesh[11].qualifier_ui | Q000401 |
| mesh[11].descriptor_ui | D002289 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | mortality |
| mesh[11].descriptor_name | Carcinoma, Non-Small-Cell Lung |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000069550 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Machine Learning |
| mesh[13].qualifier_ui | Q000097 |
| mesh[13].descriptor_ui | D015415 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | blood |
| mesh[13].descriptor_name | Biomarkers |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D060066 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Protein Interaction Maps |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000465 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Algorithms |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | Q000276 |
| mesh[17].descriptor_ui | D000086382 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | immunology |
| mesh[17].descriptor_name | COVID-19 |
| mesh[18].qualifier_ui | Q000097 |
| mesh[18].descriptor_ui | D000086382 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | blood |
| mesh[18].descriptor_name | COVID-19 |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D040901 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Proteomics |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000086402 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | SARS-CoV-2 |
| mesh[21].qualifier_ui | Q000276 |
| mesh[21].descriptor_ui | D008175 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | immunology |
| mesh[21].descriptor_name | Lung Neoplasms |
| mesh[22].qualifier_ui | Q000097 |
| mesh[22].descriptor_ui | D008175 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | blood |
| mesh[22].descriptor_name | Lung Neoplasms |
| mesh[23].qualifier_ui | Q000401 |
| mesh[23].descriptor_ui | D008175 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | mortality |
| mesh[23].descriptor_name | Lung Neoplasms |
| mesh[24].qualifier_ui | Q000276 |
| mesh[24].descriptor_ui | D001798 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | immunology |
| mesh[24].descriptor_name | Blood Proteins |
| mesh[25].qualifier_ui | Q000276 |
| mesh[25].descriptor_ui | D002289 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | immunology |
| mesh[25].descriptor_name | Carcinoma, Non-Small-Cell Lung |
| mesh[26].qualifier_ui | Q000097 |
| mesh[26].descriptor_ui | D002289 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | blood |
| mesh[26].descriptor_name | Carcinoma, Non-Small-Cell Lung |
| mesh[27].qualifier_ui | Q000401 |
| mesh[27].descriptor_ui | D002289 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | mortality |
| mesh[27].descriptor_name | Carcinoma, Non-Small-Cell Lung |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000069550 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Machine Learning |
| mesh[29].qualifier_ui | Q000097 |
| mesh[29].descriptor_ui | D015415 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | blood |
| mesh[29].descriptor_name | Biomarkers |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D060066 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Protein Interaction Maps |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D000465 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Algorithms |
| type | article |
| title | Immune status assessment based on plasma proteomics with meta graph convolutional networks |
| awards[0].id | https://openalex.org/G8657659977 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 82073800 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6713303153 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62172121 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G8482454962 |
| awards[2].funder_id | https://openalex.org/F4320323085 |
| awards[2].display_name | |
| awards[2].funder_award_id | LH2022F012 |
| awards[2].funder_display_name | Natural Science Foundation of Heilongjiang Province |
| biblio.issue | 1 |
| biblio.volume | 26 |
| biblio.last_page | 360 |
| biblio.first_page | 360 |
| topics[0].id | https://openalex.org/T12254 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9904000163078308 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Machine Learning in Bioinformatics |
| topics[1].id | https://openalex.org/T10519 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9715999960899353 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1607 |
| topics[1].subfield.display_name | Spectroscopy |
| topics[1].display_name | Advanced Proteomics Techniques and Applications |
| topics[2].id | https://openalex.org/T11171 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9706000089645386 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Diabetes and associated disorders |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320323085 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Heilongjiang Province |
| is_xpac | False |
| apc_list.value | 1570 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1925 |
| apc_paid.value | 1570 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1925 |
| concepts[0].id | https://openalex.org/C46111723 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7257589101791382 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q471857 |
| concepts[0].display_name | Proteomics |
| concepts[1].id | https://openalex.org/C86803240 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6424291729927063 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[1].display_name | Biology |
| concepts[2].id | https://openalex.org/C8891405 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5899569988250732 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1059 |
| concepts[2].display_name | Immune system |
| concepts[3].id | https://openalex.org/C70721500 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5873986482620239 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[3].display_name | Computational biology |
| concepts[4].id | https://openalex.org/C95371953 |
| concepts[4].level | 4 |
| concepts[4].score | 0.4525274336338043 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q591745 |
| concepts[4].display_name | DNA microarray |
| concepts[5].id | https://openalex.org/C95190672 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41938483715057373 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[5].display_name | Meta-analysis |
| concepts[6].id | https://openalex.org/C60644358 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3812490403652191 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[6].display_name | Bioinformatics |
| concepts[7].id | https://openalex.org/C203014093 |
| concepts[7].level | 1 |
| concepts[7].score | 0.26410382986068726 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q101929 |
| concepts[7].display_name | Immunology |
| concepts[8].id | https://openalex.org/C54355233 |
| concepts[8].level | 1 |
| concepts[8].score | 0.26212868094444275 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[8].display_name | Genetics |
| concepts[9].id | https://openalex.org/C104317684 |
| concepts[9].level | 2 |
| concepts[9].score | 0.12955591082572937 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[9].display_name | Gene |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12573066353797913 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10896483063697815 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C150194340 |
| concepts[12].level | 3 |
| concepts[12].score | 0.10465776920318604 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[12].display_name | Gene expression |
| keywords[0].id | https://openalex.org/keywords/proteomics |
| keywords[0].score | 0.7257589101791382 |
| keywords[0].display_name | Proteomics |
| keywords[1].id | https://openalex.org/keywords/biology |
| keywords[1].score | 0.6424291729927063 |
| keywords[1].display_name | Biology |
| keywords[2].id | https://openalex.org/keywords/immune-system |
| keywords[2].score | 0.5899569988250732 |
| keywords[2].display_name | Immune system |
| keywords[3].id | https://openalex.org/keywords/computational-biology |
| keywords[3].score | 0.5873986482620239 |
| keywords[3].display_name | Computational biology |
| keywords[4].id | https://openalex.org/keywords/dna-microarray |
| keywords[4].score | 0.4525274336338043 |
| keywords[4].display_name | DNA microarray |
| keywords[5].id | https://openalex.org/keywords/meta-analysis |
| keywords[5].score | 0.41938483715057373 |
| keywords[5].display_name | Meta-analysis |
| keywords[6].id | https://openalex.org/keywords/bioinformatics |
| keywords[6].score | 0.3812490403652191 |
| keywords[6].display_name | Bioinformatics |
| keywords[7].id | https://openalex.org/keywords/immunology |
| keywords[7].score | 0.26410382986068726 |
| keywords[7].display_name | Immunology |
| keywords[8].id | https://openalex.org/keywords/genetics |
| keywords[8].score | 0.26212868094444275 |
| keywords[8].display_name | Genetics |
| keywords[9].id | https://openalex.org/keywords/gene |
| keywords[9].score | 0.12955591082572937 |
| keywords[9].display_name | Gene |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.12573066353797913 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.10896483063697815 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/gene-expression |
| keywords[12].score | 0.10465776920318604 |
| keywords[12].display_name | Gene expression |
| language | en |
| locations[0].id | doi:10.1186/s12864-025-11537-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S28614077 |
| locations[0].source.issn | 1471-2164 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1471-2164 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMC Genomics |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-025-11537-6 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMC Genomics |
| locations[0].landing_page_url | https://doi.org/10.1186/s12864-025-11537-6 |
| locations[1].id | pmid:40211143 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMC genomics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40211143 |
| locations[2].id | pmh:oai:doaj.org/article:b35be888fed24a0bbc0a5f11d819bf52 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BMC Genomics, Vol 26, Iss 1, Pp 1-17 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/b35be888fed24a0bbc0a5f11d819bf52 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11983875 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | BMC Genomics |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11983875 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100402977 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1424-5693 |
| authorships[0].author.display_name | Min Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. |
| authorships[0].institutions[0].id | https://openalex.org/I151727225 |
| authorships[0].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Harbin Engineering University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Min Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. |
| authorships[1].author.id | https://openalex.org/A5064813104 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1212-7773 |
| authorships[1].author.display_name | Nan Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I66867065 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. |
| authorships[1].institutions[0].id | https://openalex.org/I66867065 |
| authorships[1].institutions[0].ror | https://ror.org/02n96ep67 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I66867065 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | East China Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nan Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. |
| authorships[2].author.id | https://openalex.org/A5010238749 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2575-8665 |
| authorships[2].author.display_name | Qi Cheng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. |
| authorships[2].institutions[0].id | https://openalex.org/I151727225 |
| authorships[2].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Engineering University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qi Cheng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. |
| authorships[3].author.id | https://openalex.org/A5100394421 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3507-5355 |
| authorships[3].author.display_name | Jing Ye |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I66867065 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. |
| authorships[3].institutions[0].id | https://openalex.org/I66867065 |
| authorships[3].institutions[0].ror | https://ror.org/02n96ep67 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I66867065 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | East China Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jing Ye |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. |
| authorships[4].author.id | https://openalex.org/A5101934104 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3206-6827 |
| authorships[4].author.display_name | Shiwei Wu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. |
| authorships[4].institutions[0].id | https://openalex.org/I151727225 |
| authorships[4].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Harbin Engineering University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shiwei Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. |
| authorships[5].author.id | https://openalex.org/A5070514010 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9802-1202 |
| authorships[5].author.display_name | Haoliang Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. |
| authorships[5].institutions[0].id | https://openalex.org/I151727225 |
| authorships[5].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Harbin Engineering University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Haoliang Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. |
| authorships[6].author.id | https://openalex.org/A5007847919 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4328-466X |
| authorships[6].author.display_name | Chengkui Zhao |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. [email protected]. |
| authorships[6].affiliations[1].raw_affiliation_string | Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai, China. [email protected]. |
| authorships[6].institutions[0].id | https://openalex.org/I151727225 |
| authorships[6].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Harbin Engineering University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chengkui Zhao |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. [email protected]., Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai, China. [email protected]. |
| authorships[7].author.id | https://openalex.org/A5100374637 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4575-0599 |
| authorships[7].author.display_name | Lei Yu |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I66867065 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. [email protected]. |
| authorships[7].affiliations[1].raw_affiliation_string | Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai, China. [email protected]. |
| authorships[7].institutions[0].id | https://openalex.org/I66867065 |
| authorships[7].institutions[0].ror | https://ror.org/02n96ep67 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I66867065 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | East China Normal University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lei Yu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. [email protected]., Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai, China. [email protected]. |
| authorships[8].author.id | https://openalex.org/A5102953680 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6466-7918 |
| authorships[8].author.display_name | Weixing Feng |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I151727225 |
| authorships[8].affiliations[0].raw_affiliation_string | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. [email protected]. |
| authorships[8].institutions[0].id | https://openalex.org/I151727225 |
| authorships[8].institutions[0].ror | https://ror.org/03x80pn82 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I151727225 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Harbin Engineering University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Weixing Feng |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-025-11537-6 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Immune status assessment based on plasma proteomics with meta graph convolutional networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12254 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9904000163078308 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Machine Learning in Bioinformatics |
| related_works | https://openalex.org/W1488408180, https://openalex.org/W3134325150, https://openalex.org/W2360290178, https://openalex.org/W3210678099, https://openalex.org/W4200025911, https://openalex.org/W2035260723, https://openalex.org/W4405644996, https://openalex.org/W4394486262, https://openalex.org/W3088977003, https://openalex.org/W1979675584 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s12864-025-11537-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S28614077 |
| best_oa_location.source.issn | 1471-2164 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1471-2164 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMC Genomics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-025-11537-6 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMC Genomics |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12864-025-11537-6 |
| primary_location.id | doi:10.1186/s12864-025-11537-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S28614077 |
| primary_location.source.issn | 1471-2164 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1471-2164 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMC Genomics |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/s12864-025-11537-6 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMC Genomics |
| primary_location.landing_page_url | https://doi.org/10.1186/s12864-025-11537-6 |
| publication_date | 2025-04-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4309511017, https://openalex.org/W3136031961, https://openalex.org/W2340698433, https://openalex.org/W2919822707, https://openalex.org/W3168527459, https://openalex.org/W4224929780, https://openalex.org/W3171826908, https://openalex.org/W4400294266, https://openalex.org/W2990851413, https://openalex.org/W3174268490, https://openalex.org/W4401427258, https://openalex.org/W4389391124, https://openalex.org/W3093961188, https://openalex.org/W2815133411, https://openalex.org/W4389573497, https://openalex.org/W4378085510, https://openalex.org/W1973186819, https://openalex.org/W2065415440, https://openalex.org/W4401524962, https://openalex.org/W2994160326, https://openalex.org/W4376878813, https://openalex.org/W3216406885, https://openalex.org/W4283170479, https://openalex.org/W4282942883, https://openalex.org/W4393068279, https://openalex.org/W2984323660, https://openalex.org/W2076462567, https://openalex.org/W3014527183, https://openalex.org/W2961749459, https://openalex.org/W2525885586, https://openalex.org/W3137981723, https://openalex.org/W1985690663, https://openalex.org/W3197507137, https://openalex.org/W4307889746, https://openalex.org/W4387599745, https://openalex.org/W4407292618 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 36, 118 |
| abstract_inverted_index.To | 29 |
| abstract_inverted_index.as | 92 |
| abstract_inverted_index.in | 127 |
| abstract_inverted_index.to | 48, 124 |
| abstract_inverted_index.309 | 58 |
| abstract_inverted_index.and | 11, 23, 43, 65, 84, 90, 111, 140 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.for | 7, 81 |
| abstract_inverted_index.key | 93 |
| abstract_inverted_index.six | 68 |
| abstract_inverted_index.the | 18, 101, 114 |
| abstract_inverted_index.two | 97 |
| abstract_inverted_index.via | 52 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.data | 47 |
| abstract_inverted_index.four | 72 |
| abstract_inverted_index.gap, | 32 |
| abstract_inverted_index.link | 19 |
| abstract_inverted_index.lung | 129 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.were | 79 |
| abstract_inverted_index.with | 61, 108 |
| abstract_inverted_index.(PPI) | 46 |
| abstract_inverted_index.These | 133 |
| abstract_inverted_index.Using | 67 |
| abstract_inverted_index.aging | 85 |
| abstract_inverted_index.graph | 40 |
| abstract_inverted_index.model | 37 |
| abstract_inverted_index.novel | 119 |
| abstract_inverted_index.rates | 126 |
| abstract_inverted_index.study | 115 |
| abstract_inverted_index.their | 16 |
| abstract_inverted_index.these | 21 |
| abstract_inverted_index.vital | 6 |
| abstract_inverted_index.GDF15, | 89 |
| abstract_inverted_index.Lasso) | 78 |
| abstract_inverted_index.Plasma | 0 |
| abstract_inverted_index.across | 96 |
| abstract_inverted_index.bridge | 30 |
| abstract_inverted_index.cancer | 130 |
| abstract_inverted_index.health | 10, 138 |
| abstract_inverted_index.immune | 9, 25, 50, 82, 105, 122, 137 |
| abstract_inverted_index.metric | 120 |
| abstract_inverted_index.plasma | 53 |
| abstract_inverted_index.risks. | 14 |
| abstract_inverted_index.status | 51, 106 |
| abstract_inverted_index.(NSCLC) | 131 |
| abstract_inverted_index.(Random | 74 |
| abstract_inverted_index.Despite | 15 |
| abstract_inverted_index.Forest, | 75 |
| abstract_inverted_index.advance | 135 |
| abstract_inverted_index.between | 20 |
| abstract_inverted_index.cohorts | 99 |
| abstract_inverted_index.disease | 13, 141 |
| abstract_inverted_index.factors | 60 |
| abstract_inverted_index.linking | 121 |
| abstract_inverted_index.machine | 69 |
| abstract_inverted_index.model's | 102 |
| abstract_inverted_index.remains | 27 |
| abstract_inverted_index.showing | 104 |
| abstract_inverted_index.COVID-19 | 98 |
| abstract_inverted_index.SERPINF2 | 91 |
| abstract_inverted_index.XGBoost, | 77 |
| abstract_inverted_index.evaluate | 49 |
| abstract_inverted_index.function | 26 |
| abstract_inverted_index.insights | 134 |
| abstract_inverted_index.learning | 70 |
| abstract_inverted_index.methods, | 71 |
| abstract_inverted_index.profiles | 123 |
| abstract_inverted_index.proposed | 116 |
| abstract_inverted_index.proteins | 22 |
| abstract_inverted_index.selected | 80 |
| abstract_inverted_index.survival | 125 |
| abstract_inverted_index.systemic | 24 |
| abstract_inverted_index.unclear. | 28 |
| abstract_inverted_index.ADAMTS13, | 88 |
| abstract_inverted_index.LightGBM, | 76 |
| abstract_inverted_index.analysis, | 86 |
| abstract_inverted_index.assessing | 8 |
| abstract_inverted_index.confirmed | 100 |
| abstract_inverted_index.developed | 34 |
| abstract_inverted_index.framework | 56 |
| abstract_inverted_index.functions | 64 |
| abstract_inverted_index.infection | 109 |
| abstract_inverted_index.networks, | 42 |
| abstract_inverted_index.pathways. | 66 |
| abstract_inverted_index.patients. | 132 |
| abstract_inverted_index.profiling | 83 |
| abstract_inverted_index.proteins, | 1, 4 |
| abstract_inverted_index.recovery. | 112 |
| abstract_inverted_index.revealing | 87 |
| abstract_inverted_index.Validation | 95 |
| abstract_inverted_index.algorithms | 73 |
| abstract_inverted_index.associated | 62 |
| abstract_inverted_index.biological | 63 |
| abstract_inverted_index.correlates | 107 |
| abstract_inverted_index.especially | 2 |
| abstract_inverted_index.identified | 57 |
| abstract_inverted_index.predicting | 12 |
| abstract_inverted_index.strategies | 139 |
| abstract_inverted_index.ProMetaGCN, | 35 |
| abstract_inverted_index.biomarkers. | 94 |
| abstract_inverted_index.integrating | 38 |
| abstract_inverted_index.interaction | 45 |
| abstract_inverted_index.prevention. | 142 |
| abstract_inverted_index.progression | 110 |
| abstract_inverted_index.proteomics. | 54 |
| abstract_inverted_index.researchers | 33 |
| abstract_inverted_index.robustness, | 103 |
| abstract_inverted_index.Furthermore, | 113 |
| abstract_inverted_index.personalized | 136 |
| abstract_inverted_index.ImmuneAgeGap, | 117 |
| abstract_inverted_index.convolutional | 41 |
| abstract_inverted_index.significance, | 17 |
| abstract_inverted_index.immune-related | 3, 59 |
| abstract_inverted_index.meta-learning, | 39 |
| abstract_inverted_index.non-small-cell | 128 |
| abstract_inverted_index.protein-protein | 44 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.11015866 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |