Impact of Data Partitioning to Improve Prediction Accuracy for Remaining Useful Life of Li-Ion Batteries Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1155/2023/9305309
Predicting the remaining useful life (RUL) of a battery is critical to ensure the safe management of its manufacture and operation. In this study, a comprehensive investigation of the effect of data partitioning methods on RUL prediction was performed. To confirm the generality and transferability, the charge–discharge information of cathode materials with different chemical elements was adopted from previous research, including lithium iron phosphate, lithium nickel cobalt aluminum oxide, and lithium nickel cobalt manganese oxide cells. Among the partitioning procedures, the method of adding predicted data from the surrogate model to the training set exhibited the best accuracy, with an average mean absolute error (MAE) of 47 cycles. In contrast, the slide BOX method, which only used certain cycles before the test set as the training set, exhibited the worst MAE value of 60 cycles. In conclusion, the proposed data partitioning method could be implemented to predict the RUL of batteries to develop next-generation cathode materials with improved performance and stability, shorten the quality assessment time, and achieve stable predictive maintenance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2023/9305309
- https://downloads.hindawi.com/journals/ijer/2023/9305309.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320482443
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320482443Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2023/9305309Digital Object Identifier
- Title
-
Impact of Data Partitioning to Improve Prediction Accuracy for Remaining Useful Life of Li-Ion BatteriesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-13Full publication date if available
- Authors
-
Joonchul Kim, Eunsong Kim, Junghwan Park, Kyoung‐Tak Kim, Joung‐Hu Park, Taesic Kim, Kyoungmin MinList of authors in order
- Landing page
-
https://doi.org/10.1155/2023/9305309Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/ijer/2023/9305309.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/ijer/2023/9305309.pdfDirect OA link when available
- Concepts
-
Lithium iron phosphate, Reliability engineering, Stability (learning theory), Battery (electricity), Cobalt oxide, Computer science, Lithium (medication), Reliability (semiconductor), Cobalt, Materials science, Engineering, Metallurgy, Machine learning, Quantum mechanics, Endocrinology, Physics, Power (physics), MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320482443 |
|---|---|
| doi | https://doi.org/10.1155/2023/9305309 |
| ids.doi | https://doi.org/10.1155/2023/9305309 |
| ids.openalex | https://openalex.org/W4320482443 |
| fwci | 0.3271224 |
| type | article |
| title | Impact of Data Partitioning to Improve Prediction Accuracy for Remaining Useful Life of Li-Ion Batteries |
| awards[0].id | https://openalex.org/G908338487 |
| awards[0].funder_id | https://openalex.org/F4320322030 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2022R1F1A1074339 |
| awards[0].funder_display_name | Ministry of Science, ICT and Future Planning |
| awards[1].id | https://openalex.org/G3800908132 |
| awards[1].funder_id | https://openalex.org/F4320322030 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2020R1F1A1066519 |
| awards[1].funder_display_name | Ministry of Science, ICT and Future Planning |
| awards[2].id | https://openalex.org/G1514055665 |
| awards[2].funder_id | https://openalex.org/F4320322030 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2021-0-01539 |
| awards[2].funder_display_name | Ministry of Science, ICT and Future Planning |
| biblio.issue | |
| biblio.volume | 2023 |
| biblio.last_page | 13 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10018 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advancements in Battery Materials |
| topics[2].id | https://openalex.org/T10780 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9916999936103821 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Reliability and Maintenance Optimization |
| funders[0].id | https://openalex.org/F4320322030 |
| funders[0].ror | https://ror.org/032e49973 |
| funders[0].display_name | Ministry of Science, ICT and Future Planning |
| is_xpac | False |
| apc_list.value | 2570 |
| apc_list.currency | USD |
| apc_list.value_usd | 2570 |
| apc_paid.value | 2570 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2570 |
| concepts[0].id | https://openalex.org/C2779179610 |
| concepts[0].level | 4 |
| concepts[0].score | 0.6350838541984558 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3042400 |
| concepts[0].display_name | Lithium iron phosphate |
| concepts[1].id | https://openalex.org/C200601418 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5060626864433289 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[1].display_name | Reliability engineering |
| concepts[2].id | https://openalex.org/C112972136 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5042482614517212 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[2].display_name | Stability (learning theory) |
| concepts[3].id | https://openalex.org/C555008776 |
| concepts[3].level | 3 |
| concepts[3].score | 0.47641193866729736 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[3].display_name | Battery (electricity) |
| concepts[4].id | https://openalex.org/C2779664699 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4731494188308716 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q726248 |
| concepts[4].display_name | Cobalt oxide |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.43654558062553406 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2778541603 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43047046661376953 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q152763 |
| concepts[6].display_name | Lithium (medication) |
| concepts[7].id | https://openalex.org/C43214815 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42211073637008667 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[7].display_name | Reliability (semiconductor) |
| concepts[8].id | https://openalex.org/C515602321 |
| concepts[8].level | 2 |
| concepts[8].score | 0.38501760363578796 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q740 |
| concepts[8].display_name | Cobalt |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3244314193725586 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3066864311695099 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C191897082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.14513498544692993 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[11].display_name | Metallurgy |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11631929874420166 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C134018914 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[14].display_name | Endocrinology |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C163258240 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[16].display_name | Power (physics) |
| concepts[17].id | https://openalex.org/C71924100 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[17].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/lithium-iron-phosphate |
| keywords[0].score | 0.6350838541984558 |
| keywords[0].display_name | Lithium iron phosphate |
| keywords[1].id | https://openalex.org/keywords/reliability-engineering |
| keywords[1].score | 0.5060626864433289 |
| keywords[1].display_name | Reliability engineering |
| keywords[2].id | https://openalex.org/keywords/stability |
| keywords[2].score | 0.5042482614517212 |
| keywords[2].display_name | Stability (learning theory) |
| keywords[3].id | https://openalex.org/keywords/battery |
| keywords[3].score | 0.47641193866729736 |
| keywords[3].display_name | Battery (electricity) |
| keywords[4].id | https://openalex.org/keywords/cobalt-oxide |
| keywords[4].score | 0.4731494188308716 |
| keywords[4].display_name | Cobalt oxide |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.43654558062553406 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/lithium |
| keywords[6].score | 0.43047046661376953 |
| keywords[6].display_name | Lithium (medication) |
| keywords[7].id | https://openalex.org/keywords/reliability |
| keywords[7].score | 0.42211073637008667 |
| keywords[7].display_name | Reliability (semiconductor) |
| keywords[8].id | https://openalex.org/keywords/cobalt |
| keywords[8].score | 0.38501760363578796 |
| keywords[8].display_name | Cobalt |
| keywords[9].id | https://openalex.org/keywords/materials-science |
| keywords[9].score | 0.3244314193725586 |
| keywords[9].display_name | Materials science |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.3066864311695099 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/metallurgy |
| keywords[11].score | 0.14513498544692993 |
| keywords[11].display_name | Metallurgy |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.11631929874420166 |
| keywords[12].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1155/2023/9305309 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S32776067 |
| locations[0].source.issn | 0363-907X, 1099-114X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0363-907X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Energy Research |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/ijer/2023/9305309.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Energy Research |
| locations[0].landing_page_url | https://doi.org/10.1155/2023/9305309 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5029402116 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3928-8657 |
| authorships[0].author.display_name | Joonchul Kim |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141371507 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I141371507 |
| authorships[0].institutions[0].ror | https://ror.org/017xnm587 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141371507 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Soongsil University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joonchul Kim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5020928006 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-0581-1563 |
| authorships[1].author.display_name | Eunsong Kim |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141371507 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I141371507 |
| authorships[1].institutions[0].ror | https://ror.org/017xnm587 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141371507 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Soongsil University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eunsong Kim |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5116568528 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4244-4948 |
| authorships[2].author.display_name | Junghwan Park |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141371507 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I141371507 |
| authorships[2].institutions[0].ror | https://ror.org/017xnm587 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I141371507 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Soongsil University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jung-Hwan Park |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5036457845 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4080-2484 |
| authorships[3].author.display_name | Kyoung‐Tak Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141371507 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I141371507 |
| authorships[3].institutions[0].ror | https://ror.org/017xnm587 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141371507 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Soongsil University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kyoung-Tak Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5056988739 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Joung‐Hu Park |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141371507 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I141371507 |
| authorships[4].institutions[0].ror | https://ror.org/017xnm587 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141371507 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Soongsil University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Joung-Hu Park |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Electrical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5021845485 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6392-1446 |
| authorships[5].author.display_name | Taesic Kim |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I181414168 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, Texas A&M University—Kingsville, Kingsville, TX, USA |
| authorships[5].institutions[0].id | https://openalex.org/I181414168 |
| authorships[5].institutions[0].ror | https://ror.org/05abs3w97 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I181414168 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Texas A&M University – Kingsville |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Taesic Kim |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, Texas A&M University—Kingsville, Kingsville, TX, USA |
| authorships[6].author.id | https://openalex.org/A5054443352 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1041-6005 |
| authorships[6].author.display_name | Kyoungmin Min |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I141371507 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| authorships[6].institutions[0].id | https://openalex.org/I141371507 |
| authorships[6].institutions[0].ror | https://ror.org/017xnm587 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I141371507 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Soongsil University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kyoungmin Min |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/ijer/2023/9305309.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Impact of Data Partitioning to Improve Prediction Accuracy for Remaining Useful Life of Li-Ion Batteries |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W1581508683, https://openalex.org/W2393609525, https://openalex.org/W3013742163, https://openalex.org/W3046123253, https://openalex.org/W2051709469, https://openalex.org/W1982805300, https://openalex.org/W4323026177, https://openalex.org/W2071542995, https://openalex.org/W2883061584 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1155/2023/9305309 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S32776067 |
| best_oa_location.source.issn | 0363-907X, 1099-114X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0363-907X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Energy Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/ijer/2023/9305309.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Energy Research |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2023/9305309 |
| primary_location.id | doi:10.1155/2023/9305309 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S32776067 |
| primary_location.source.issn | 0363-907X, 1099-114X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0363-907X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Energy Research |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/ijer/2023/9305309.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Energy Research |
| primary_location.landing_page_url | https://doi.org/10.1155/2023/9305309 |
| publication_date | 2023-02-13 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1974892479, https://openalex.org/W2898205466, https://openalex.org/W2079985616, https://openalex.org/W2020511590, https://openalex.org/W3036278482, https://openalex.org/W1628954589, https://openalex.org/W2974625411, https://openalex.org/W2911341021, https://openalex.org/W2799353157, https://openalex.org/W1988629119, https://openalex.org/W2586821891, https://openalex.org/W2087828092, https://openalex.org/W2789625876, https://openalex.org/W3025760818, https://openalex.org/W2097950625, https://openalex.org/W828050630, https://openalex.org/W2513919993, https://openalex.org/W2231565152, https://openalex.org/W3034877844, https://openalex.org/W3086631322, https://openalex.org/W2560706027, https://openalex.org/W3042828663, https://openalex.org/W2924382816, https://openalex.org/W3135514141, https://openalex.org/W3062552330, https://openalex.org/W3126452185, https://openalex.org/W2497266549, https://openalex.org/W2999053608, https://openalex.org/W3074222438, https://openalex.org/W3013372615, https://openalex.org/W3047949753, https://openalex.org/W3049411593, https://openalex.org/W3012264837, https://openalex.org/W2025183033, https://openalex.org/W3135698256, https://openalex.org/W4285982395, https://openalex.org/W3048596141, https://openalex.org/W3134547429, https://openalex.org/W2071280205, https://openalex.org/W3049468927 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 7, 24 |
| abstract_inverted_index.47 | 106 |
| abstract_inverted_index.60 | 133 |
| abstract_inverted_index.In | 21, 108, 135 |
| abstract_inverted_index.To | 39 |
| abstract_inverted_index.an | 99 |
| abstract_inverted_index.as | 123 |
| abstract_inverted_index.be | 143 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 6, 16, 27, 30, 48, 82, 105, 132, 149 |
| abstract_inverted_index.on | 34 |
| abstract_inverted_index.to | 11, 90, 145, 151 |
| abstract_inverted_index.BOX | 112 |
| abstract_inverted_index.MAE | 130 |
| abstract_inverted_index.RUL | 35, 148 |
| abstract_inverted_index.and | 19, 43, 69, 159, 166 |
| abstract_inverted_index.its | 17 |
| abstract_inverted_index.set | 93, 122 |
| abstract_inverted_index.the | 1, 13, 28, 41, 45, 77, 80, 87, 91, 95, 110, 120, 124, 128, 137, 147, 162 |
| abstract_inverted_index.was | 37, 55 |
| abstract_inverted_index.best | 96 |
| abstract_inverted_index.data | 31, 85, 139 |
| abstract_inverted_index.from | 57, 86 |
| abstract_inverted_index.iron | 62 |
| abstract_inverted_index.life | 4 |
| abstract_inverted_index.mean | 101 |
| abstract_inverted_index.only | 115 |
| abstract_inverted_index.safe | 14 |
| abstract_inverted_index.set, | 126 |
| abstract_inverted_index.test | 121 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.used | 116 |
| abstract_inverted_index.with | 51, 98, 156 |
| abstract_inverted_index.(MAE) | 104 |
| abstract_inverted_index.(RUL) | 5 |
| abstract_inverted_index.Among | 76 |
| abstract_inverted_index.could | 142 |
| abstract_inverted_index.error | 103 |
| abstract_inverted_index.model | 89 |
| abstract_inverted_index.oxide | 74 |
| abstract_inverted_index.slide | 111 |
| abstract_inverted_index.time, | 165 |
| abstract_inverted_index.value | 131 |
| abstract_inverted_index.which | 114 |
| abstract_inverted_index.worst | 129 |
| abstract_inverted_index.adding | 83 |
| abstract_inverted_index.before | 119 |
| abstract_inverted_index.cells. | 75 |
| abstract_inverted_index.cobalt | 66, 72 |
| abstract_inverted_index.cycles | 118 |
| abstract_inverted_index.effect | 29 |
| abstract_inverted_index.ensure | 12 |
| abstract_inverted_index.method | 81, 141 |
| abstract_inverted_index.nickel | 65, 71 |
| abstract_inverted_index.oxide, | 68 |
| abstract_inverted_index.stable | 168 |
| abstract_inverted_index.study, | 23 |
| abstract_inverted_index.useful | 3 |
| abstract_inverted_index.achieve | 167 |
| abstract_inverted_index.adopted | 56 |
| abstract_inverted_index.average | 100 |
| abstract_inverted_index.battery | 8 |
| abstract_inverted_index.cathode | 49, 154 |
| abstract_inverted_index.certain | 117 |
| abstract_inverted_index.confirm | 40 |
| abstract_inverted_index.cycles. | 107, 134 |
| abstract_inverted_index.develop | 152 |
| abstract_inverted_index.lithium | 61, 64, 70 |
| abstract_inverted_index.method, | 113 |
| abstract_inverted_index.methods | 33 |
| abstract_inverted_index.predict | 146 |
| abstract_inverted_index.quality | 163 |
| abstract_inverted_index.shorten | 161 |
| abstract_inverted_index.absolute | 102 |
| abstract_inverted_index.aluminum | 67 |
| abstract_inverted_index.chemical | 53 |
| abstract_inverted_index.critical | 10 |
| abstract_inverted_index.elements | 54 |
| abstract_inverted_index.improved | 157 |
| abstract_inverted_index.previous | 58 |
| abstract_inverted_index.proposed | 138 |
| abstract_inverted_index.training | 92, 125 |
| abstract_inverted_index.accuracy, | 97 |
| abstract_inverted_index.batteries | 150 |
| abstract_inverted_index.contrast, | 109 |
| abstract_inverted_index.different | 52 |
| abstract_inverted_index.exhibited | 94, 127 |
| abstract_inverted_index.including | 60 |
| abstract_inverted_index.manganese | 73 |
| abstract_inverted_index.materials | 50, 155 |
| abstract_inverted_index.predicted | 84 |
| abstract_inverted_index.remaining | 2 |
| abstract_inverted_index.research, | 59 |
| abstract_inverted_index.surrogate | 88 |
| abstract_inverted_index.Predicting | 0 |
| abstract_inverted_index.assessment | 164 |
| abstract_inverted_index.generality | 42 |
| abstract_inverted_index.management | 15 |
| abstract_inverted_index.operation. | 20 |
| abstract_inverted_index.performed. | 38 |
| abstract_inverted_index.phosphate, | 63 |
| abstract_inverted_index.prediction | 36 |
| abstract_inverted_index.predictive | 169 |
| abstract_inverted_index.stability, | 160 |
| abstract_inverted_index.conclusion, | 136 |
| abstract_inverted_index.implemented | 144 |
| abstract_inverted_index.information | 47 |
| abstract_inverted_index.manufacture | 18 |
| abstract_inverted_index.performance | 158 |
| abstract_inverted_index.procedures, | 79 |
| abstract_inverted_index.maintenance. | 170 |
| abstract_inverted_index.partitioning | 32, 78, 140 |
| abstract_inverted_index.comprehensive | 25 |
| abstract_inverted_index.investigation | 26 |
| abstract_inverted_index.next-generation | 153 |
| abstract_inverted_index.transferability, | 44 |
| abstract_inverted_index.charge–discharge | 46 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5021845485, https://openalex.org/A5054443352, https://openalex.org/A5056988739 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I141371507, https://openalex.org/I181414168 |
| citation_normalized_percentile.value | 0.50303439 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |