Impacts of Spatial and Temporal Resolution on Remotely Sensed Corn and Soybean Emergence Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/rs16224145
Crop emergence is critical for crop growth modeling, crop condition monitoring, and crop yield estimation. Ground collections of crop emergence dates are time-consuming and can only include limited fields. Remote sensing time series have been used to detect crop emergence. However, the impacts of the temporal and spatial resolutions of these time series on crop emergence detection have not been thoroughly evaluated. This paper assesses corn and soybean emergence detection using various remote sensing datasets (i.e., VENµS, Planet Fusion, Sentinel-2, Landsat, and Harmonized Landsat and Sentinel-2 (HLS)) with diverse spatial and temporal resolutions. The green-up dates from the remote sensing time series are detected using the within-season emergence (WISE) algorithm and assessed using ground emergence observations and planting records of corn, soybeans, and alfalfa from the Beltsville Agricultural Research Center (BARC) fields in Maryland, USA, from 2019 to 2023. Our results showed that most emergence events (~95%) could be detected when the frequency of usable observations reached ten days or less. Planet Fusion captured all crop emergences and outperformed other datasets, with a mean difference (MD) of <1 day, a mean absolute difference (MAD) of <5 days, and a root mean square error (RMSE) of <6 days compared to the ground-observed emergence dates. The HLS and Sentinel-2 time series captured most emergences of corn and soybeans with MD < 3 days, MAD < 7 days, and RMSE < 9 days. Landsat detected less than half of the crop emergences in recent years when both Landsat-8 and -9 were available. In our study area, temporal revisit plays a more crucial role in emergence detection than spatial resolution. Spatial resolutions from 5 to 30 m are suitable for field-level summaries in the study area. However, the 30 m HLS lacked sub-field details in fields with mixed cropping systems. The findings from this study could benefit remotely sensed crop emergence detection from local to regional scales.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs16224145
- OA Status
- gold
- Cited By
- 7
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404142644
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404142644Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs16224145Digital Object Identifier
- Title
-
Impacts of Spatial and Temporal Resolution on Remotely Sensed Corn and Soybean Emergence DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-07Full publication date if available
- Authors
-
Feng Gao, Martha C. Anderson, Rasmus HouborgList of authors in order
- Landing page
-
https://doi.org/10.3390/rs16224145Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/rs16224145Direct OA link when available
- Concepts
-
Remote sensing, Environmental science, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404142644 |
|---|---|
| doi | https://doi.org/10.3390/rs16224145 |
| ids.doi | https://doi.org/10.3390/rs16224145 |
| ids.openalex | https://openalex.org/W4404142644 |
| fwci | 6.15695987 |
| type | article |
| title | Impacts of Spatial and Temporal Resolution on Remotely Sensed Corn and Soybean Emergence Detection |
| biblio.issue | 22 |
| biblio.volume | 16 |
| biblio.last_page | 4145 |
| biblio.first_page | 4145 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9789999723434448 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C62649853 |
| concepts[0].level | 1 |
| concepts[0].score | 0.682600200176239 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[0].display_name | Remote sensing |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.46665263175964355 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C205649164 |
| concepts[2].level | 0 |
| concepts[2].score | 0.2269289791584015 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[2].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/remote-sensing |
| keywords[0].score | 0.682600200176239 |
| keywords[0].display_name | Remote sensing |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.46665263175964355 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/geography |
| keywords[2].score | 0.2269289791584015 |
| keywords[2].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/rs16224145 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs16224145 |
| locations[1].id | pmh:oai:doaj.org/article:dcf2e8a6467449898cc0349ba6d93b24 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 16, Iss 22, p 4145 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/dcf2e8a6467449898cc0349ba6d93b24 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100362401 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1865-2846 |
| authorships[0].author.display_name | Feng Gao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1312222531, https://openalex.org/I1336096307 |
| authorships[0].affiliations[0].raw_affiliation_string | Hydrology and Remote Sensing Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1312222531 |
| authorships[0].institutions[0].ror | https://ror.org/02d2m2044 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Agricultural Research Service |
| authorships[0].institutions[1].id | https://openalex.org/I1336096307 |
| authorships[0].institutions[1].ror | https://ror.org/01na82s61 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I1336096307 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | United States Department of Agriculture |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feng Gao |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Hydrology and Remote Sensing Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA |
| authorships[1].author.id | https://openalex.org/A5082926470 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0748-5525 |
| authorships[1].author.display_name | Martha C. Anderson |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1312222531, https://openalex.org/I1336096307 |
| authorships[1].affiliations[0].raw_affiliation_string | Hydrology and Remote Sensing Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1312222531 |
| authorships[1].institutions[0].ror | https://ror.org/02d2m2044 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Agricultural Research Service |
| authorships[1].institutions[1].id | https://openalex.org/I1336096307 |
| authorships[1].institutions[1].ror | https://ror.org/01na82s61 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I1336096307 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | United States Department of Agriculture |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Martha Anderson |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hydrology and Remote Sensing Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA |
| authorships[2].author.id | https://openalex.org/A5012845214 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3604-0747 |
| authorships[2].author.display_name | Rasmus Houborg |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210115535 |
| authorships[2].affiliations[0].raw_affiliation_string | Planet Labs Public Benefit Corporation, San Francisco, CA 94107, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210115535 |
| authorships[2].institutions[0].ror | https://ror.org/022weqt39 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210115535 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Planet Biotechnology (United States) |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rasmus Houborg |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Planet Labs Public Benefit Corporation, San Francisco, CA 94107, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/rs16224145 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Impacts of Spatial and Temporal Resolution on Remotely Sensed Corn and Soybean Emergence Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2121524756, https://openalex.org/W782553550, https://openalex.org/W1987967678, https://openalex.org/W2633218168, https://openalex.org/W4235897794, https://openalex.org/W2059707233, https://openalex.org/W1983126463, https://openalex.org/W2085738998, https://openalex.org/W2095126257, https://openalex.org/W2031511989 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs16224145 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs16224145 |
| primary_location.id | doi:10.3390/rs16224145 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs16224145 |
| publication_date | 2024-11-07 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2141817421, https://openalex.org/W2153598078, https://openalex.org/W4362677866, https://openalex.org/W4401639184, https://openalex.org/W3130839160, https://openalex.org/W2067828731, https://openalex.org/W3214328303, https://openalex.org/W3197589309, https://openalex.org/W2072093516, https://openalex.org/W2793197903, https://openalex.org/W3004741759, https://openalex.org/W2552805558, https://openalex.org/W3010657180, https://openalex.org/W4200443079, https://openalex.org/W3137820239, https://openalex.org/W4391929179, https://openalex.org/W2901401525, https://openalex.org/W4389037968, https://openalex.org/W2897285410, https://openalex.org/W2892407019, https://openalex.org/W3204017761, https://openalex.org/W4403759113 |
| referenced_works_count | 22 |
| abstract_inverted_index.3 | 219 |
| abstract_inverted_index.5 | 269 |
| abstract_inverted_index.7 | 223 |
| abstract_inverted_index.9 | 228 |
| abstract_inverted_index.a | 172, 179, 188, 256 |
| abstract_inverted_index.m | 272, 285 |
| abstract_inverted_index.-9 | 246 |
| abstract_inverted_index.30 | 271, 284 |
| abstract_inverted_index.In | 249 |
| abstract_inverted_index.MD | 217 |
| abstract_inverted_index.be | 148 |
| abstract_inverted_index.in | 132, 239, 260, 278, 290 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 17, 43, 49, 119, 153, 176, 184, 194, 212, 235 |
| abstract_inverted_index.on | 53 |
| abstract_inverted_index.or | 159 |
| abstract_inverted_index.to | 36, 137, 198, 270, 310 |
| abstract_inverted_index.HLS | 204, 286 |
| abstract_inverted_index.MAD | 221 |
| abstract_inverted_index.Our | 139 |
| abstract_inverted_index.The | 93, 203, 296 |
| abstract_inverted_index.all | 164 |
| abstract_inverted_index.and | 11, 23, 46, 66, 81, 84, 90, 110, 116, 122, 167, 187, 205, 214, 225, 245 |
| abstract_inverted_index.are | 21, 102, 273 |
| abstract_inverted_index.can | 24 |
| abstract_inverted_index.for | 4, 275 |
| abstract_inverted_index.not | 58 |
| abstract_inverted_index.our | 250 |
| abstract_inverted_index.ten | 157 |
| abstract_inverted_index.the | 41, 44, 97, 105, 125, 151, 199, 236, 279, 283 |
| abstract_inverted_index.< | 218, 222, 227 |
| abstract_inverted_index.(MD) | 175 |
| abstract_inverted_index.2019 | 136 |
| abstract_inverted_index.Crop | 0 |
| abstract_inverted_index.RMSE | 226 |
| abstract_inverted_index.This | 62 |
| abstract_inverted_index.USA, | 134 |
| abstract_inverted_index.been | 34, 59 |
| abstract_inverted_index.both | 243 |
| abstract_inverted_index.corn | 65, 213 |
| abstract_inverted_index.crop | 5, 8, 12, 18, 38, 54, 165, 237, 305 |
| abstract_inverted_index.day, | 178 |
| abstract_inverted_index.days | 158, 196 |
| abstract_inverted_index.from | 96, 124, 135, 268, 298, 308 |
| abstract_inverted_index.half | 234 |
| abstract_inverted_index.have | 33, 57 |
| abstract_inverted_index.less | 232 |
| abstract_inverted_index.mean | 173, 180, 190 |
| abstract_inverted_index.more | 257 |
| abstract_inverted_index.most | 143, 210 |
| abstract_inverted_index.only | 25 |
| abstract_inverted_index.role | 259 |
| abstract_inverted_index.root | 189 |
| abstract_inverted_index.than | 233, 263 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.this | 299 |
| abstract_inverted_index.time | 31, 51, 100, 207 |
| abstract_inverted_index.used | 35 |
| abstract_inverted_index.were | 247 |
| abstract_inverted_index.when | 150, 242 |
| abstract_inverted_index.with | 87, 171, 216, 292 |
| abstract_inverted_index.<1 | 177 |
| abstract_inverted_index.<5 | 185 |
| abstract_inverted_index.<6 | 195 |
| abstract_inverted_index.(MAD) | 183 |
| abstract_inverted_index.2023. | 138 |
| abstract_inverted_index.area, | 252 |
| abstract_inverted_index.area. | 281 |
| abstract_inverted_index.corn, | 120 |
| abstract_inverted_index.could | 147, 301 |
| abstract_inverted_index.dates | 20, 95 |
| abstract_inverted_index.days, | 186, 220, 224 |
| abstract_inverted_index.days. | 229 |
| abstract_inverted_index.error | 192 |
| abstract_inverted_index.less. | 160 |
| abstract_inverted_index.local | 309 |
| abstract_inverted_index.mixed | 293 |
| abstract_inverted_index.other | 169 |
| abstract_inverted_index.paper | 63 |
| abstract_inverted_index.plays | 255 |
| abstract_inverted_index.study | 251, 280, 300 |
| abstract_inverted_index.these | 50 |
| abstract_inverted_index.using | 70, 104, 112 |
| abstract_inverted_index.years | 241 |
| abstract_inverted_index.yield | 13 |
| abstract_inverted_index.(BARC) | 130 |
| abstract_inverted_index.(HLS)) | 86 |
| abstract_inverted_index.(RMSE) | 193 |
| abstract_inverted_index.(WISE) | 108 |
| abstract_inverted_index.(i.e., | 75 |
| abstract_inverted_index.(~95%) | 146 |
| abstract_inverted_index.Center | 129 |
| abstract_inverted_index.Fusion | 162 |
| abstract_inverted_index.Ground | 15 |
| abstract_inverted_index.Planet | 77, 161 |
| abstract_inverted_index.Remote | 29 |
| abstract_inverted_index.dates. | 202 |
| abstract_inverted_index.detect | 37 |
| abstract_inverted_index.events | 145 |
| abstract_inverted_index.fields | 131, 291 |
| abstract_inverted_index.ground | 113 |
| abstract_inverted_index.growth | 6 |
| abstract_inverted_index.lacked | 287 |
| abstract_inverted_index.recent | 240 |
| abstract_inverted_index.remote | 72, 98 |
| abstract_inverted_index.sensed | 304 |
| abstract_inverted_index.series | 32, 52, 101, 208 |
| abstract_inverted_index.showed | 141 |
| abstract_inverted_index.square | 191 |
| abstract_inverted_index.usable | 154 |
| abstract_inverted_index.Fusion, | 78 |
| abstract_inverted_index.Landsat | 83, 230 |
| abstract_inverted_index.Spatial | 266 |
| abstract_inverted_index.VENµS, | 76 |
| abstract_inverted_index.alfalfa | 123 |
| abstract_inverted_index.benefit | 302 |
| abstract_inverted_index.crucial | 258 |
| abstract_inverted_index.details | 289 |
| abstract_inverted_index.diverse | 88 |
| abstract_inverted_index.fields. | 28 |
| abstract_inverted_index.impacts | 42 |
| abstract_inverted_index.include | 26 |
| abstract_inverted_index.limited | 27 |
| abstract_inverted_index.reached | 156 |
| abstract_inverted_index.records | 118 |
| abstract_inverted_index.results | 140 |
| abstract_inverted_index.revisit | 254 |
| abstract_inverted_index.scales. | 312 |
| abstract_inverted_index.sensing | 30, 73, 99 |
| abstract_inverted_index.soybean | 67 |
| abstract_inverted_index.spatial | 47, 89, 264 |
| abstract_inverted_index.various | 71 |
| abstract_inverted_index.However, | 40, 282 |
| abstract_inverted_index.Landsat, | 80 |
| abstract_inverted_index.Research | 128 |
| abstract_inverted_index.absolute | 181 |
| abstract_inverted_index.assessed | 111 |
| abstract_inverted_index.assesses | 64 |
| abstract_inverted_index.captured | 163, 209 |
| abstract_inverted_index.compared | 197 |
| abstract_inverted_index.critical | 3 |
| abstract_inverted_index.cropping | 294 |
| abstract_inverted_index.datasets | 74 |
| abstract_inverted_index.detected | 103, 149, 231 |
| abstract_inverted_index.findings | 297 |
| abstract_inverted_index.green-up | 94 |
| abstract_inverted_index.planting | 117 |
| abstract_inverted_index.regional | 311 |
| abstract_inverted_index.remotely | 303 |
| abstract_inverted_index.soybeans | 215 |
| abstract_inverted_index.suitable | 274 |
| abstract_inverted_index.systems. | 295 |
| abstract_inverted_index.temporal | 45, 91, 253 |
| abstract_inverted_index.Landsat-8 | 244 |
| abstract_inverted_index.Maryland, | 133 |
| abstract_inverted_index.algorithm | 109 |
| abstract_inverted_index.condition | 9 |
| abstract_inverted_index.datasets, | 170 |
| abstract_inverted_index.detection | 56, 69, 262, 307 |
| abstract_inverted_index.emergence | 1, 19, 55, 68, 107, 114, 144, 201, 261, 306 |
| abstract_inverted_index.frequency | 152 |
| abstract_inverted_index.modeling, | 7 |
| abstract_inverted_index.soybeans, | 121 |
| abstract_inverted_index.sub-field | 288 |
| abstract_inverted_index.summaries | 277 |
| abstract_inverted_index.Beltsville | 126 |
| abstract_inverted_index.Harmonized | 82 |
| abstract_inverted_index.Sentinel-2 | 85, 206 |
| abstract_inverted_index.available. | 248 |
| abstract_inverted_index.difference | 174, 182 |
| abstract_inverted_index.emergence. | 39 |
| abstract_inverted_index.emergences | 166, 211, 238 |
| abstract_inverted_index.evaluated. | 61 |
| abstract_inverted_index.thoroughly | 60 |
| abstract_inverted_index.Sentinel-2, | 79 |
| abstract_inverted_index.collections | 16 |
| abstract_inverted_index.estimation. | 14 |
| abstract_inverted_index.field-level | 276 |
| abstract_inverted_index.monitoring, | 10 |
| abstract_inverted_index.resolution. | 265 |
| abstract_inverted_index.resolutions | 48, 267 |
| abstract_inverted_index.Agricultural | 127 |
| abstract_inverted_index.observations | 115, 155 |
| abstract_inverted_index.outperformed | 168 |
| abstract_inverted_index.resolutions. | 92 |
| abstract_inverted_index.within-season | 106 |
| abstract_inverted_index.time-consuming | 22 |
| abstract_inverted_index.ground-observed | 200 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5100362401 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I1312222531, https://openalex.org/I1336096307 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.94138539 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |