Implementation of 3d CNN-Based Brain Tumor Detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.47392/irjaeh.2025.0263
Brain tumors are life-threatening neurological disorders that require early and precise diagnosis for effective treatment. Traditional manual MRI interpretation is time-consuming and prone to human error, making automated AI-based detection essential. This project presents an AI-driven detection system for brain tumors using 3D Convolutional Neural Networks (3D CNNs) applied to MRI scans. The model processes 2D MRI slices, reconstructs a 3D brain model, and classifies the presence of tumors with high accuracy. The dataset undergoes preprocessing steps such as normalization, resizing, and augmentation to enhance model performance. The deep learning model is trained and evaluated using performance metrics including accuracy, precision, recall, F1-score, and AUC-ROC to ensure reliable classification. The system also generates annotated 3D tumor visualizations, assisting radiologists in clinical decision-making. Experimental results show that the 3D CNN model significantly improves tumor detection accuracy, outperforming conventional 2D CNN approaches. This study highlights the potential of AI-based medical imaging for efficient, accurate, and automated brain tumor diagnosis in real-world clinical applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.47392/irjaeh.2025.0263
- https://irjaeh.com/index.php/journal/article/download/763/698
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410100137
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410100137Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.47392/irjaeh.2025.0263Digital Object Identifier
- Title
-
Implementation of 3d CNN-Based Brain Tumor DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-28Full publication date if available
- Authors
-
Bala Subramanian S, Anlin Sahaya Infant Tinu M, Aswin Kumar A, M Nandhitha, Y. Raghu Reddy, Dr.V. MahavaishnaviList of authors in order
- Landing page
-
https://doi.org/10.47392/irjaeh.2025.0263Publisher landing page
- PDF URL
-
https://irjaeh.com/index.php/journal/article/download/763/698Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://irjaeh.com/index.php/journal/article/download/763/698Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Brain tumor, Pattern recognition (psychology), Medicine, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410100137 |
|---|---|
| doi | https://doi.org/10.47392/irjaeh.2025.0263 |
| ids.doi | https://doi.org/10.47392/irjaeh.2025.0263 |
| ids.openalex | https://openalex.org/W4410100137 |
| fwci | 0.0 |
| type | article |
| title | Implementation of 3d CNN-Based Brain Tumor Detection |
| biblio.issue | 04 |
| biblio.volume | 3 |
| biblio.last_page | 1827 |
| biblio.first_page | 1818 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9652000069618225 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5109785795211792 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.44825148582458496 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2779130545 |
| concepts[2].level | 2 |
| concepts[2].score | 0.44542422890663147 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q233309 |
| concepts[2].display_name | Brain tumor |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.36203455924987793 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2323683202266693 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C142724271 |
| concepts[5].level | 1 |
| concepts[5].score | 0.12737250328063965 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[5].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5109785795211792 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.44825148582458496 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/brain-tumor |
| keywords[2].score | 0.44542422890663147 |
| keywords[2].display_name | Brain tumor |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.36203455924987793 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.2323683202266693 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/pathology |
| keywords[5].score | 0.12737250328063965 |
| keywords[5].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.47392/irjaeh.2025.0263 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407010578 |
| locations[0].source.issn | 2584-2137 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2584-2137 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://irjaeh.com/index.php/journal/article/download/763/698 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| locations[0].landing_page_url | https://doi.org/10.47392/irjaeh.2025.0263 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114191999 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bala Subramanian S |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Bharath raj S |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101556643 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Anlin Sahaya Infant Tinu M |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Abdul Fadhil M |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5117441409 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Aswin Kumar A |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Aswin Kumar A |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5117441410 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | M Nandhitha |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None Nandhitha M |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5022148572 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-9401-4478 |
| authorships[4].author.display_name | Y. Raghu Reddy |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | None Rithika Sri Y |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5117441411 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Dr.V. Mahavaishnavi |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | None Dr.V. Mahavaishnavi |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://irjaeh.com/index.php/journal/article/download/763/698 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Implementation of 3d CNN-Based Brain Tumor Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9652000069618225 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.47392/irjaeh.2025.0263 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407010578 |
| best_oa_location.source.issn | 2584-2137 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2584-2137 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://irjaeh.com/index.php/journal/article/download/763/698 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| best_oa_location.landing_page_url | https://doi.org/10.47392/irjaeh.2025.0263 |
| primary_location.id | doi:10.47392/irjaeh.2025.0263 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407010578 |
| primary_location.source.issn | 2584-2137 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2584-2137 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://irjaeh.com/index.php/journal/article/download/763/698 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Research Journal on Advanced Engineering Hub (IRJAEH) |
| primary_location.landing_page_url | https://doi.org/10.47392/irjaeh.2025.0263 |
| publication_date | 2025-04-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 59 |
| abstract_inverted_index.2D | 55, 137 |
| abstract_inverted_index.3D | 42, 60, 114, 127 |
| abstract_inverted_index.an | 34 |
| abstract_inverted_index.as | 78 |
| abstract_inverted_index.in | 119, 157 |
| abstract_inverted_index.is | 19, 91 |
| abstract_inverted_index.of | 67, 145 |
| abstract_inverted_index.to | 23, 49, 83, 105 |
| abstract_inverted_index.(3D | 46 |
| abstract_inverted_index.CNN | 128, 138 |
| abstract_inverted_index.MRI | 17, 50, 56 |
| abstract_inverted_index.The | 52, 72, 87, 109 |
| abstract_inverted_index.and | 9, 21, 63, 81, 93, 103, 152 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.for | 12, 38, 149 |
| abstract_inverted_index.the | 65, 126, 143 |
| abstract_inverted_index.This | 31, 140 |
| abstract_inverted_index.also | 111 |
| abstract_inverted_index.deep | 88 |
| abstract_inverted_index.high | 70 |
| abstract_inverted_index.show | 124 |
| abstract_inverted_index.such | 77 |
| abstract_inverted_index.that | 6, 125 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.Brain | 0 |
| abstract_inverted_index.CNNs) | 47 |
| abstract_inverted_index.brain | 39, 61, 154 |
| abstract_inverted_index.early | 8 |
| abstract_inverted_index.human | 24 |
| abstract_inverted_index.model | 53, 85, 90, 129 |
| abstract_inverted_index.prone | 22 |
| abstract_inverted_index.steps | 76 |
| abstract_inverted_index.study | 141 |
| abstract_inverted_index.tumor | 115, 132, 155 |
| abstract_inverted_index.using | 41, 95 |
| abstract_inverted_index.Neural | 44 |
| abstract_inverted_index.ensure | 106 |
| abstract_inverted_index.error, | 25 |
| abstract_inverted_index.making | 26 |
| abstract_inverted_index.manual | 16 |
| abstract_inverted_index.model, | 62 |
| abstract_inverted_index.scans. | 51 |
| abstract_inverted_index.system | 37, 110 |
| abstract_inverted_index.tumors | 1, 40, 68 |
| abstract_inverted_index.AUC-ROC | 104 |
| abstract_inverted_index.applied | 48 |
| abstract_inverted_index.dataset | 73 |
| abstract_inverted_index.enhance | 84 |
| abstract_inverted_index.imaging | 148 |
| abstract_inverted_index.medical | 147 |
| abstract_inverted_index.metrics | 97 |
| abstract_inverted_index.precise | 10 |
| abstract_inverted_index.project | 32 |
| abstract_inverted_index.recall, | 101 |
| abstract_inverted_index.require | 7 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.slices, | 57 |
| abstract_inverted_index.trained | 92 |
| abstract_inverted_index.AI-based | 28, 146 |
| abstract_inverted_index.Networks | 45 |
| abstract_inverted_index.clinical | 120, 159 |
| abstract_inverted_index.improves | 131 |
| abstract_inverted_index.learning | 89 |
| abstract_inverted_index.presence | 66 |
| abstract_inverted_index.presents | 33 |
| abstract_inverted_index.reliable | 107 |
| abstract_inverted_index.AI-driven | 35 |
| abstract_inverted_index.F1-score, | 102 |
| abstract_inverted_index.accuracy, | 99, 134 |
| abstract_inverted_index.accuracy. | 71 |
| abstract_inverted_index.accurate, | 151 |
| abstract_inverted_index.annotated | 113 |
| abstract_inverted_index.assisting | 117 |
| abstract_inverted_index.automated | 27, 153 |
| abstract_inverted_index.detection | 29, 36, 133 |
| abstract_inverted_index.diagnosis | 11, 156 |
| abstract_inverted_index.disorders | 5 |
| abstract_inverted_index.effective | 13 |
| abstract_inverted_index.evaluated | 94 |
| abstract_inverted_index.generates | 112 |
| abstract_inverted_index.including | 98 |
| abstract_inverted_index.potential | 144 |
| abstract_inverted_index.processes | 54 |
| abstract_inverted_index.resizing, | 80 |
| abstract_inverted_index.undergoes | 74 |
| abstract_inverted_index.classifies | 64 |
| abstract_inverted_index.efficient, | 150 |
| abstract_inverted_index.essential. | 30 |
| abstract_inverted_index.highlights | 142 |
| abstract_inverted_index.precision, | 100 |
| abstract_inverted_index.real-world | 158 |
| abstract_inverted_index.treatment. | 14 |
| abstract_inverted_index.Traditional | 15 |
| abstract_inverted_index.approaches. | 139 |
| abstract_inverted_index.performance | 96 |
| abstract_inverted_index.Experimental | 122 |
| abstract_inverted_index.augmentation | 82 |
| abstract_inverted_index.conventional | 136 |
| abstract_inverted_index.neurological | 4 |
| abstract_inverted_index.performance. | 86 |
| abstract_inverted_index.radiologists | 118 |
| abstract_inverted_index.reconstructs | 58 |
| abstract_inverted_index.Convolutional | 43 |
| abstract_inverted_index.applications. | 160 |
| abstract_inverted_index.outperforming | 135 |
| abstract_inverted_index.preprocessing | 75 |
| abstract_inverted_index.significantly | 130 |
| abstract_inverted_index.interpretation | 18 |
| abstract_inverted_index.normalization, | 79 |
| abstract_inverted_index.time-consuming | 20 |
| abstract_inverted_index.classification. | 108 |
| abstract_inverted_index.visualizations, | 116 |
| abstract_inverted_index.decision-making. | 121 |
| abstract_inverted_index.life-threatening | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.19801678 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |