Implementation of Face Recognition Automated Attendance Management System using ESP32-CAM Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.22214/ijraset.2025.67775
Attendance management is a crucial task in educational institutions and organizations. Traditional methods of recording attendance, such as manual entry or card-based systems, are time-consuming, error-prone, and difficult to manage in large-scale environments. To overcome these challenges, this paper presents an automated attendance management system using the ESP32-CAM microcontroller integrated with face recognition technology. The system captures real-time images, processes them using a Haar Cascade Classifier for face detection, and employs Principal Component Analysis (PCA) for face recognition. Upon successful recognition, the system automatically logs the attendance into a centralized database. The ESP32- CAM’s low cost, compact size, and wireless connectivity make it an ideal solution for large-scale deployment. The proposed system achieved an accuracy of approximately 95% with a low false positive rate, demonstrating reliable performance even under varying lighting conditions. This solution reduces human effort, improves accuracy, and ensures real-time attendance monitoring, making it suitable for educational institutions and professional environments
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.22214/ijraset.2025.67775
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408777469
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408777469Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22214/ijraset.2025.67775Digital Object Identifier
- Title
-
Implementation of Face Recognition Automated Attendance Management System using ESP32-CAMWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-24Full publication date if available
- Authors
-
Dasari Meena, P. Parimalarani, Nikhil Kumar, Sk. Farukh, M. Babu, P. EkshitheswariList of authors in order
- Landing page
-
https://doi.org/10.22214/ijraset.2025.67775Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.22214/ijraset.2025.67775Direct OA link when available
- Concepts
-
Attendance, Computer science, Facial recognition system, Face (sociological concept), Artificial intelligence, Pattern recognition (psychology), Sociology, Political science, Law, Social scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408777469 |
|---|---|
| doi | https://doi.org/10.22214/ijraset.2025.67775 |
| ids.doi | https://doi.org/10.22214/ijraset.2025.67775 |
| ids.openalex | https://openalex.org/W4408777469 |
| fwci | 0.0 |
| type | article |
| title | Implementation of Face Recognition Automated Attendance Management System using ESP32-CAM |
| biblio.issue | 3 |
| biblio.volume | 13 |
| biblio.last_page | 2139 |
| biblio.first_page | 2134 |
| topics[0].id | https://openalex.org/T12222 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9914000034332275 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | IoT-based Smart Home Systems |
| topics[1].id | https://openalex.org/T12406 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9541000127792358 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | IoT and GPS-based Vehicle Safety Systems |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9014000296592712 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778173179 |
| concepts[0].level | 2 |
| concepts[0].score | 0.678336501121521 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25339289 |
| concepts[0].display_name | Attendance |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5115812420845032 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C31510193 |
| concepts[2].level | 3 |
| concepts[2].score | 0.49734213948249817 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1192553 |
| concepts[2].display_name | Facial recognition system |
| concepts[3].id | https://openalex.org/C2779304628 |
| concepts[3].level | 2 |
| concepts[3].score | 0.453368216753006 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[3].display_name | Face (sociological concept) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.29292386770248413 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.19434583187103271 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C144024400 |
| concepts[6].level | 0 |
| concepts[6].score | 0.05462399125099182 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[6].display_name | Sociology |
| concepts[7].id | https://openalex.org/C17744445 |
| concepts[7].level | 0 |
| concepts[7].score | 0.04650583863258362 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[7].display_name | Political science |
| concepts[8].id | https://openalex.org/C199539241 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[8].display_name | Law |
| concepts[9].id | https://openalex.org/C36289849 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[9].display_name | Social science |
| keywords[0].id | https://openalex.org/keywords/attendance |
| keywords[0].score | 0.678336501121521 |
| keywords[0].display_name | Attendance |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5115812420845032 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/facial-recognition-system |
| keywords[2].score | 0.49734213948249817 |
| keywords[2].display_name | Facial recognition system |
| keywords[3].id | https://openalex.org/keywords/face |
| keywords[3].score | 0.453368216753006 |
| keywords[3].display_name | Face (sociological concept) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.29292386770248413 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.19434583187103271 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/sociology |
| keywords[6].score | 0.05462399125099182 |
| keywords[6].display_name | Sociology |
| keywords[7].id | https://openalex.org/keywords/political-science |
| keywords[7].score | 0.04650583863258362 |
| keywords[7].display_name | Political science |
| language | en |
| locations[0].id | doi:10.22214/ijraset.2025.67775 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764566388 |
| locations[0].source.issn | 2321-9653 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2321-9653 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| locations[0].source.host_organization | https://openalex.org/P4322614460 |
| locations[0].source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322614460 |
| locations[0].source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| locations[0].landing_page_url | https://doi.org/10.22214/ijraset.2025.67775 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5116770701 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dasari Meena |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dasari Meena |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5116770702 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | P. Parimalarani |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | P. Parimalarani |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102984676 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nikhil Kumar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | N. Veerendra Kumar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5116770703 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sk. Farukh |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sk. Farukh |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5087029592 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1497-9489 |
| authorships[4].author.display_name | M. Babu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | M. Revanth Babu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5116770704 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | P. Ekshitheswari |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | P. Ekshitheswari |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.22214/ijraset.2025.67775 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Implementation of Face Recognition Automated Attendance Management System using ESP32-CAM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12222 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9914000034332275 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | IoT-based Smart Home Systems |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2013696174, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2384651879 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22214/ijraset.2025.67775 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764566388 |
| best_oa_location.source.issn | 2321-9653 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2321-9653 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4322614460 |
| best_oa_location.source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322614460 |
| best_oa_location.source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| best_oa_location.landing_page_url | https://doi.org/10.22214/ijraset.2025.67775 |
| primary_location.id | doi:10.22214/ijraset.2025.67775 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764566388 |
| primary_location.source.issn | 2321-9653 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2321-9653 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal for Research in Applied Science and Engineering Technology |
| primary_location.source.host_organization | https://openalex.org/P4322614460 |
| primary_location.source.host_organization_name | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322614460 |
| primary_location.source.host_organization_lineage_names | International Journal for Research in Applied Science and Engineering Technology (IJRASET) |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal for Research in Applied Science and Engineering Technology |
| primary_location.landing_page_url | https://doi.org/10.22214/ijraset.2025.67775 |
| publication_date | 2025-03-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 63, 89, 120 |
| abstract_inverted_index.To | 34 |
| abstract_inverted_index.an | 41, 104, 114 |
| abstract_inverted_index.as | 18 |
| abstract_inverted_index.in | 7, 31 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 103, 146 |
| abstract_inverted_index.of | 14, 116 |
| abstract_inverted_index.or | 21 |
| abstract_inverted_index.to | 29 |
| abstract_inverted_index.95% | 118 |
| abstract_inverted_index.The | 55, 92, 110 |
| abstract_inverted_index.and | 10, 27, 70, 99, 140, 151 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.for | 67, 76, 107, 148 |
| abstract_inverted_index.low | 95, 121 |
| abstract_inverted_index.the | 47, 82, 86 |
| abstract_inverted_index.Haar | 64 |
| abstract_inverted_index.This | 133 |
| abstract_inverted_index.Upon | 79 |
| abstract_inverted_index.even | 128 |
| abstract_inverted_index.face | 52, 68, 77 |
| abstract_inverted_index.into | 88 |
| abstract_inverted_index.logs | 85 |
| abstract_inverted_index.make | 102 |
| abstract_inverted_index.such | 17 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.them | 61 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.with | 51, 119 |
| abstract_inverted_index.(PCA) | 75 |
| abstract_inverted_index.cost, | 96 |
| abstract_inverted_index.entry | 20 |
| abstract_inverted_index.false | 122 |
| abstract_inverted_index.human | 136 |
| abstract_inverted_index.ideal | 105 |
| abstract_inverted_index.paper | 39 |
| abstract_inverted_index.rate, | 124 |
| abstract_inverted_index.size, | 98 |
| abstract_inverted_index.these | 36 |
| abstract_inverted_index.under | 129 |
| abstract_inverted_index.using | 46, 62 |
| abstract_inverted_index.ESP32- | 93 |
| abstract_inverted_index.making | 145 |
| abstract_inverted_index.manage | 30 |
| abstract_inverted_index.manual | 19 |
| abstract_inverted_index.system | 45, 56, 83, 112 |
| abstract_inverted_index.CAM’s | 94 |
| abstract_inverted_index.Cascade | 65 |
| abstract_inverted_index.compact | 97 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.effort, | 137 |
| abstract_inverted_index.employs | 71 |
| abstract_inverted_index.ensures | 141 |
| abstract_inverted_index.images, | 59 |
| abstract_inverted_index.methods | 13 |
| abstract_inverted_index.reduces | 135 |
| abstract_inverted_index.varying | 130 |
| abstract_inverted_index.Analysis | 74 |
| abstract_inverted_index.accuracy | 115 |
| abstract_inverted_index.achieved | 113 |
| abstract_inverted_index.captures | 57 |
| abstract_inverted_index.improves | 138 |
| abstract_inverted_index.lighting | 131 |
| abstract_inverted_index.overcome | 35 |
| abstract_inverted_index.positive | 123 |
| abstract_inverted_index.presents | 40 |
| abstract_inverted_index.proposed | 111 |
| abstract_inverted_index.reliable | 126 |
| abstract_inverted_index.solution | 106, 134 |
| abstract_inverted_index.suitable | 147 |
| abstract_inverted_index.systems, | 23 |
| abstract_inverted_index.wireless | 100 |
| abstract_inverted_index.Abstract: | 0 |
| abstract_inverted_index.Component | 73 |
| abstract_inverted_index.ESP32-CAM | 48 |
| abstract_inverted_index.Principal | 72 |
| abstract_inverted_index.accuracy, | 139 |
| abstract_inverted_index.automated | 42 |
| abstract_inverted_index.database. | 91 |
| abstract_inverted_index.difficult | 28 |
| abstract_inverted_index.processes | 60 |
| abstract_inverted_index.real-time | 58, 142 |
| abstract_inverted_index.recording | 15 |
| abstract_inverted_index.Attendance | 1 |
| abstract_inverted_index.Classifier | 66 |
| abstract_inverted_index.attendance | 43, 87, 143 |
| abstract_inverted_index.card-based | 22 |
| abstract_inverted_index.detection, | 69 |
| abstract_inverted_index.integrated | 50 |
| abstract_inverted_index.management | 2, 44 |
| abstract_inverted_index.successful | 80 |
| abstract_inverted_index.Traditional | 12 |
| abstract_inverted_index.attendance, | 16 |
| abstract_inverted_index.centralized | 90 |
| abstract_inverted_index.challenges, | 37 |
| abstract_inverted_index.conditions. | 132 |
| abstract_inverted_index.deployment. | 109 |
| abstract_inverted_index.educational | 8, 149 |
| abstract_inverted_index.large-scale | 32, 108 |
| abstract_inverted_index.monitoring, | 144 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.recognition | 53 |
| abstract_inverted_index.technology. | 54 |
| abstract_inverted_index.connectivity | 101 |
| abstract_inverted_index.environments | 153 |
| abstract_inverted_index.error-prone, | 26 |
| abstract_inverted_index.institutions | 9, 150 |
| abstract_inverted_index.professional | 152 |
| abstract_inverted_index.recognition, | 81 |
| abstract_inverted_index.recognition. | 78 |
| abstract_inverted_index.approximately | 117 |
| abstract_inverted_index.automatically | 84 |
| abstract_inverted_index.demonstrating | 125 |
| abstract_inverted_index.environments. | 33 |
| abstract_inverted_index.organizations. | 11 |
| abstract_inverted_index.microcontroller | 49 |
| abstract_inverted_index.time-consuming, | 25 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.09027049 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |