Implementation of machine learning techniques to predict impact\n parameter and transverse spherocity in heavy-ion collisions at the LHC Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2110.04026
Machine learning techniques have been quite popular recently in the\nhigh-energy physics community and have led to numerous developments in this\nfield. In heavy-ion collisions, one of the crucial observables, the impact\nparameter, plays an important role in the final-state particle production. This\nbeing extremely small (i.e. of the order of a few fermi), it is almost\nimpossible to measure impact parameter in experiments. In this work, we\nimplement the ML-based regression technique via Gradient Boosting Decision\nTrees (GBDT) to obtain a prediction of impact parameter in Pb-Pb collisions at\n$\\sqrt{s_{NN}}$ = 5.02 TeV using A Multi-Phase Transport (AMPT) model. After\nits successful implementation in small collision systems, transverse\nspherocity, an event shape observable, holds an opportunity to reveal more\nabout the particle production in heavy-ion collisions as well. In the absence\nof any experimental exploration in this direction at the LHC yet, we suggest an\nML-based regression method to estimate centrality-wise transverse spherocity\ndistributions in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 5.02 TeV by training the\nmodel with minimum bias collision data. Throughout this work, we have used a\nfew final state observables as the input to the ML-model, which could be easily\nmade available from collision data. Our method seems to work quite well as we\nsee a good agreement between the simulated true values and the predicted values\nfrom the ML-model.\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2110.04026
- https://arxiv.org/pdf/2110.04026
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4327856541
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4327856541Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2110.04026Digital Object Identifier
- Title
-
Implementation of machine learning techniques to predict impact\n parameter and transverse spherocity in heavy-ion collisions at the LHCWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-08Full publication date if available
- Authors
-
A. N. Mishra, Neelkamal Mallick, S. Tripathy, Suman Deb, R. SahooList of authors in order
- Landing page
-
https://arxiv.org/abs/2110.04026Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2110.04026Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2110.04026Direct OA link when available
- Concepts
-
Large Hadron Collider, Observable, Physics, Collision, Gradient boosting, Nuclear physics, Transverse plane, Heavy ion, Work (physics), Impact parameter, Particle physics, Centrality, Statistical physics, Fermi Gamma-ray Space Telescope, Computational physics, Ion, Computer science, Statistics, Machine learning, Mathematics, Quantum mechanics, Random forest, Engineering, Computer security, Structural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4327856541 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2110.04026 |
| ids.openalex | https://openalex.org/W4327856541 |
| fwci | 0.0 |
| type | preprint |
| title | Implementation of machine learning techniques to predict impact\n parameter and transverse spherocity in heavy-ion collisions at the LHC |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10527 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | High-Energy Particle Collisions Research |
| topics[1].id | https://openalex.org/T10048 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9692999720573425 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Particle physics theoretical and experimental studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87668248 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8449448943138123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q40605 |
| concepts[0].display_name | Large Hadron Collider |
| concepts[1].id | https://openalex.org/C32848918 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8270420432090759 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q845789 |
| concepts[1].display_name | Observable |
| concepts[2].id | https://openalex.org/C121332964 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7393763065338135 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[2].display_name | Physics |
| concepts[3].id | https://openalex.org/C121704057 |
| concepts[3].level | 2 |
| concepts[3].score | 0.703058123588562 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q352070 |
| concepts[3].display_name | Collision |
| concepts[4].id | https://openalex.org/C70153297 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5677571296691895 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[4].display_name | Gradient boosting |
| concepts[5].id | https://openalex.org/C185544564 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5597737431526184 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[5].display_name | Nuclear physics |
| concepts[6].id | https://openalex.org/C154954056 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5137768387794495 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1604164 |
| concepts[6].display_name | Transverse plane |
| concepts[7].id | https://openalex.org/C2988362075 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5082637667655945 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12416032 |
| concepts[7].display_name | Heavy ion |
| concepts[8].id | https://openalex.org/C18762648 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5081760883331299 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[8].display_name | Work (physics) |
| concepts[9].id | https://openalex.org/C90167683 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5023112297058105 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q903040 |
| concepts[9].display_name | Impact parameter |
| concepts[10].id | https://openalex.org/C109214941 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4891131520271301 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[10].display_name | Particle physics |
| concepts[11].id | https://openalex.org/C53811970 |
| concepts[11].level | 2 |
| concepts[11].score | 0.46383509039878845 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5062194 |
| concepts[11].display_name | Centrality |
| concepts[12].id | https://openalex.org/C121864883 |
| concepts[12].level | 1 |
| concepts[12].score | 0.46301576495170593 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[12].display_name | Statistical physics |
| concepts[13].id | https://openalex.org/C186769553 |
| concepts[13].level | 2 |
| concepts[13].score | 0.42963850498199463 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q726648 |
| concepts[13].display_name | Fermi Gamma-ray Space Telescope |
| concepts[14].id | https://openalex.org/C30475298 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3373768627643585 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q909554 |
| concepts[14].display_name | Computational physics |
| concepts[15].id | https://openalex.org/C145148216 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3238527178764343 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36496 |
| concepts[15].display_name | Ion |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.23433873057365417 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.20618808269500732 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C119857082 |
| concepts[18].level | 1 |
| concepts[18].score | 0.12945249676704407 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[18].display_name | Machine learning |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.12234866619110107 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.12101489305496216 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C169258074 |
| concepts[21].level | 2 |
| concepts[21].score | 0.09786942601203918 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[21].display_name | Random forest |
| concepts[22].id | https://openalex.org/C127413603 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[22].display_name | Engineering |
| concepts[23].id | https://openalex.org/C38652104 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[23].display_name | Computer security |
| concepts[24].id | https://openalex.org/C66938386 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[24].display_name | Structural engineering |
| keywords[0].id | https://openalex.org/keywords/large-hadron-collider |
| keywords[0].score | 0.8449448943138123 |
| keywords[0].display_name | Large Hadron Collider |
| keywords[1].id | https://openalex.org/keywords/observable |
| keywords[1].score | 0.8270420432090759 |
| keywords[1].display_name | Observable |
| keywords[2].id | https://openalex.org/keywords/physics |
| keywords[2].score | 0.7393763065338135 |
| keywords[2].display_name | Physics |
| keywords[3].id | https://openalex.org/keywords/collision |
| keywords[3].score | 0.703058123588562 |
| keywords[3].display_name | Collision |
| keywords[4].id | https://openalex.org/keywords/gradient-boosting |
| keywords[4].score | 0.5677571296691895 |
| keywords[4].display_name | Gradient boosting |
| keywords[5].id | https://openalex.org/keywords/nuclear-physics |
| keywords[5].score | 0.5597737431526184 |
| keywords[5].display_name | Nuclear physics |
| keywords[6].id | https://openalex.org/keywords/transverse-plane |
| keywords[6].score | 0.5137768387794495 |
| keywords[6].display_name | Transverse plane |
| keywords[7].id | https://openalex.org/keywords/heavy-ion |
| keywords[7].score | 0.5082637667655945 |
| keywords[7].display_name | Heavy ion |
| keywords[8].id | https://openalex.org/keywords/work |
| keywords[8].score | 0.5081760883331299 |
| keywords[8].display_name | Work (physics) |
| keywords[9].id | https://openalex.org/keywords/impact-parameter |
| keywords[9].score | 0.5023112297058105 |
| keywords[9].display_name | Impact parameter |
| keywords[10].id | https://openalex.org/keywords/particle-physics |
| keywords[10].score | 0.4891131520271301 |
| keywords[10].display_name | Particle physics |
| keywords[11].id | https://openalex.org/keywords/centrality |
| keywords[11].score | 0.46383509039878845 |
| keywords[11].display_name | Centrality |
| keywords[12].id | https://openalex.org/keywords/statistical-physics |
| keywords[12].score | 0.46301576495170593 |
| keywords[12].display_name | Statistical physics |
| keywords[13].id | https://openalex.org/keywords/fermi-gamma-ray-space-telescope |
| keywords[13].score | 0.42963850498199463 |
| keywords[13].display_name | Fermi Gamma-ray Space Telescope |
| keywords[14].id | https://openalex.org/keywords/computational-physics |
| keywords[14].score | 0.3373768627643585 |
| keywords[14].display_name | Computational physics |
| keywords[15].id | https://openalex.org/keywords/ion |
| keywords[15].score | 0.3238527178764343 |
| keywords[15].display_name | Ion |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.23433873057365417 |
| keywords[16].display_name | Computer science |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.20618808269500732 |
| keywords[17].display_name | Statistics |
| keywords[18].id | https://openalex.org/keywords/machine-learning |
| keywords[18].score | 0.12945249676704407 |
| keywords[18].display_name | Machine learning |
| keywords[19].id | https://openalex.org/keywords/mathematics |
| keywords[19].score | 0.12234866619110107 |
| keywords[19].display_name | Mathematics |
| keywords[20].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[20].score | 0.12101489305496216 |
| keywords[20].display_name | Quantum mechanics |
| keywords[21].id | https://openalex.org/keywords/random-forest |
| keywords[21].score | 0.09786942601203918 |
| keywords[21].display_name | Random forest |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2110.04026 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2110.04026 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2110.04026 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5011506442 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3892-2719 |
| authorships[0].author.display_name | A. N. Mishra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mishra, Aditya Nath |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5082403328 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2706-1025 |
| authorships[1].author.display_name | Neelkamal Mallick |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mallick, Neelkamal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033174759 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0061-5107 |
| authorships[2].author.display_name | S. Tripathy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tripathy, Sushanta |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5057629720 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0175-3712 |
| authorships[3].author.display_name | Suman Deb |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Deb, Suman |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5077943951 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3334-0661 |
| authorships[4].author.display_name | R. Sahoo |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sahoo, Raghunath |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2110.04026 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-03-20T00:00:00 |
| display_name | Implementation of machine learning techniques to predict impact\n parameter and transverse spherocity in heavy-ion collisions at the LHC |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10527 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | High-Energy Particle Collisions Research |
| related_works | https://openalex.org/W1976329544, https://openalex.org/W2037789804, https://openalex.org/W4226250808, https://openalex.org/W2777334378, https://openalex.org/W2601819232, https://openalex.org/W2051861270, https://openalex.org/W3135789557, https://openalex.org/W2952933662, https://openalex.org/W3045518815, https://openalex.org/W1979134097 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2110.04026 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2110.04026 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2110.04026 |
| primary_location.id | pmh:oai:arXiv.org:2110.04026 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2110.04026 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2110.04026 |
| publication_date | 2021-10-08 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 83, 146 |
| abstract_inverted_index.A | 87 |
| abstract_inverted_index.a | 47, 74, 190 |
| abstract_inverted_index.In | 20, 59, 118 |
| abstract_inverted_index.an | 31, 100, 105 |
| abstract_inverted_index.as | 116, 167, 188 |
| abstract_inverted_index.at | 127, 144 |
| abstract_inverted_index.be | 175 |
| abstract_inverted_index.by | 149 |
| abstract_inverted_index.in | 8, 18, 34, 57, 79, 95, 113, 124, 141 |
| abstract_inverted_index.is | 51 |
| abstract_inverted_index.it | 50 |
| abstract_inverted_index.of | 24, 43, 46, 76 |
| abstract_inverted_index.to | 15, 53, 72, 107, 136, 170, 184 |
| abstract_inverted_index.we | 131, 160 |
| abstract_inverted_index.LHC | 129 |
| abstract_inverted_index.Our | 181 |
| abstract_inverted_index.TeV | 85, 148 |
| abstract_inverted_index.and | 12, 198 |
| abstract_inverted_index.any | 121 |
| abstract_inverted_index.few | 48 |
| abstract_inverted_index.led | 14 |
| abstract_inverted_index.one | 23 |
| abstract_inverted_index.the | 25, 28, 35, 44, 63, 110, 119, 128, 168, 171, 194, 199, 202 |
| abstract_inverted_index.via | 67 |
| abstract_inverted_index.5.02 | 84, 147 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.bias | 154 |
| abstract_inverted_index.from | 178 |
| abstract_inverted_index.good | 191 |
| abstract_inverted_index.have | 3, 13, 161 |
| abstract_inverted_index.role | 33 |
| abstract_inverted_index.this | 60, 125, 158 |
| abstract_inverted_index.true | 196 |
| abstract_inverted_index.used | 162 |
| abstract_inverted_index.well | 187 |
| abstract_inverted_index.with | 152 |
| abstract_inverted_index.work | 185 |
| abstract_inverted_index.yet, | 130 |
| abstract_inverted_index.(i.e. | 42 |
| abstract_inverted_index.Pb-Pb | 80, 142 |
| abstract_inverted_index.could | 174 |
| abstract_inverted_index.data. | 156, 180 |
| abstract_inverted_index.event | 101 |
| abstract_inverted_index.final | 164 |
| abstract_inverted_index.holds | 104 |
| abstract_inverted_index.input | 169 |
| abstract_inverted_index.order | 45 |
| abstract_inverted_index.plays | 30 |
| abstract_inverted_index.quite | 5, 186 |
| abstract_inverted_index.seems | 183 |
| abstract_inverted_index.shape | 102 |
| abstract_inverted_index.small | 41, 96 |
| abstract_inverted_index.state | 165 |
| abstract_inverted_index.using | 86 |
| abstract_inverted_index.well. | 117 |
| abstract_inverted_index.which | 173 |
| abstract_inverted_index.work, | 61, 159 |
| abstract_inverted_index.(AMPT) | 90 |
| abstract_inverted_index.(GBDT) | 71 |
| abstract_inverted_index.a\nfew | 163 |
| abstract_inverted_index.impact | 55, 77 |
| abstract_inverted_index.method | 135, 182 |
| abstract_inverted_index.model. | 91 |
| abstract_inverted_index.obtain | 73 |
| abstract_inverted_index.reveal | 108 |
| abstract_inverted_index.values | 197 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.between | 193 |
| abstract_inverted_index.crucial | 26 |
| abstract_inverted_index.fermi), | 49 |
| abstract_inverted_index.measure | 54 |
| abstract_inverted_index.minimum | 153 |
| abstract_inverted_index.physics | 10 |
| abstract_inverted_index.popular | 6 |
| abstract_inverted_index.suggest | 132 |
| abstract_inverted_index.we\nsee | 189 |
| abstract_inverted_index.Boosting | 69 |
| abstract_inverted_index.Gradient | 68 |
| abstract_inverted_index.ML-based | 64 |
| abstract_inverted_index.estimate | 137 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.numerous | 16 |
| abstract_inverted_index.particle | 37, 111 |
| abstract_inverted_index.recently | 7 |
| abstract_inverted_index.systems, | 98 |
| abstract_inverted_index.training | 150 |
| abstract_inverted_index.ML-model, | 172 |
| abstract_inverted_index.Transport | 89 |
| abstract_inverted_index.agreement | 192 |
| abstract_inverted_index.available | 177 |
| abstract_inverted_index.collision | 97, 155, 179 |
| abstract_inverted_index.community | 11 |
| abstract_inverted_index.direction | 126 |
| abstract_inverted_index.extremely | 40 |
| abstract_inverted_index.heavy-ion | 21, 114 |
| abstract_inverted_index.important | 32 |
| abstract_inverted_index.parameter | 56, 78 |
| abstract_inverted_index.predicted | 200 |
| abstract_inverted_index.simulated | 195 |
| abstract_inverted_index.technique | 66 |
| abstract_inverted_index.After\nits | 92 |
| abstract_inverted_index.Throughout | 157 |
| abstract_inverted_index.collisions | 81, 115, 143 |
| abstract_inverted_index.prediction | 75 |
| abstract_inverted_index.production | 112 |
| abstract_inverted_index.regression | 65, 134 |
| abstract_inverted_index.successful | 93 |
| abstract_inverted_index.techniques | 2 |
| abstract_inverted_index.the\nmodel | 151 |
| abstract_inverted_index.transverse | 139 |
| abstract_inverted_index.ML-model.\n | 203 |
| abstract_inverted_index.Multi-Phase | 88 |
| abstract_inverted_index.This\nbeing | 39 |
| abstract_inverted_index.absence\nof | 120 |
| abstract_inverted_index.collisions, | 22 |
| abstract_inverted_index.exploration | 123 |
| abstract_inverted_index.final-state | 36 |
| abstract_inverted_index.more\nabout | 109 |
| abstract_inverted_index.observable, | 103 |
| abstract_inverted_index.observables | 166 |
| abstract_inverted_index.opportunity | 106 |
| abstract_inverted_index.production. | 38 |
| abstract_inverted_index.an\nML-based | 133 |
| abstract_inverted_index.developments | 17 |
| abstract_inverted_index.easily\nmade | 176 |
| abstract_inverted_index.experimental | 122 |
| abstract_inverted_index.experiments. | 58 |
| abstract_inverted_index.observables, | 27 |
| abstract_inverted_index.this\nfield. | 19 |
| abstract_inverted_index.values\nfrom | 201 |
| abstract_inverted_index.we\nimplement | 62 |
| abstract_inverted_index.implementation | 94 |
| abstract_inverted_index.Decision\nTrees | 70 |
| abstract_inverted_index.centrality-wise | 138 |
| abstract_inverted_index.$\\sqrt{s_{NN}}$ | 145 |
| abstract_inverted_index.the\nhigh-energy | 9 |
| abstract_inverted_index.almost\nimpossible | 52 |
| abstract_inverted_index.impact\nparameter, | 29 |
| abstract_inverted_index.at\n$\\sqrt{s_{NN}}$ | 82 |
| abstract_inverted_index.transverse\nspherocity, | 99 |
| abstract_inverted_index.spherocity\ndistributions | 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.05701978 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |