Implementation of Modified Wiener Filtering in Frequency Domain in Speech Enhancement Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.14569/ijacsa.2022.0130251
The most common complaint about Digital Hearing Aids is feedback noise. Many attempts have been undertaken in recent years to successfully reduce feedback noise. A wiener filter, which calculates the wiener gain using before and after filtering SNR, is one technique to reduce background noise. Modified Noise Reduction Method (MNRM), a new way for reducing feedback noise Reduction, is presented in this work. In the Modified Noise Reduction Strategy, the advantages of a wiener filter are merged with a decision-directed approach and a twin-stage noise suppression technique The Modified Noise Reduction method can reduce the noise more successfully, according to comprehensive MATLAB programming, investigation, and findings analysis. After being modelled in MATLAB for seven distinct noise types, the SNR of the two architectures is compared.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.14569/ijacsa.2022.0130251
- http://thesai.org/Downloads/Volume13No2/Paper_51-Implementation_of_Modified_Wiener_Filtering.pdf
- OA Status
- diamond
- Cited By
- 1
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4214767739
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4214767739Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14569/ijacsa.2022.0130251Digital Object Identifier
- Title
-
Implementation of Modified Wiener Filtering in Frequency Domain in Speech EnhancementWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
C. Ramesh Kumar, M. ChitraList of authors in order
- Landing page
-
https://doi.org/10.14569/ijacsa.2022.0130251Publisher landing page
- PDF URL
-
https://thesai.org/Downloads/Volume13No2/Paper_51-Implementation_of_Modified_Wiener_Filtering.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://thesai.org/Downloads/Volume13No2/Paper_51-Implementation_of_Modified_Wiener_Filtering.pdfDirect OA link when available
- Concepts
-
Computer science, Wiener filter, Noise (video), Noise reduction, Value noise, Reduction (mathematics), Noise measurement, Filter (signal processing), Gradient noise, Speech recognition, Noise floor, Algorithm, Artificial intelligence, Mathematics, Computer vision, Geometry, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4214767739 |
|---|---|
| doi | https://doi.org/10.14569/ijacsa.2022.0130251 |
| ids.doi | https://doi.org/10.14569/ijacsa.2022.0130251 |
| ids.openalex | https://openalex.org/W4214767739 |
| fwci | 0.19495729 |
| type | article |
| title | Implementation of Modified Wiener Filtering in Frequency Domain in Speech Enhancement |
| biblio.issue | 2 |
| biblio.volume | 13 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T11233 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Advanced Adaptive Filtering Techniques |
| topics[2].id | https://openalex.org/T10534 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9902999997138977 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Structural Health Monitoring Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8178557753562927 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C18537770 |
| concepts[1].level | 2 |
| concepts[1].score | 0.784011721611023 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25523 |
| concepts[1].display_name | Wiener filter |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6759214997291565 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C163294075 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6536223888397217 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[3].display_name | Noise reduction |
| concepts[4].id | https://openalex.org/C182163834 |
| concepts[4].level | 5 |
| concepts[4].score | 0.4708245098590851 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2926529 |
| concepts[4].display_name | Value noise |
| concepts[5].id | https://openalex.org/C111335779 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4674544930458069 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[5].display_name | Reduction (mathematics) |
| concepts[6].id | https://openalex.org/C29265498 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4539071321487427 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7047719 |
| concepts[6].display_name | Noise measurement |
| concepts[7].id | https://openalex.org/C106131492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44617021083831787 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[7].display_name | Filter (signal processing) |
| concepts[8].id | https://openalex.org/C200378446 |
| concepts[8].level | 5 |
| concepts[8].score | 0.4274422228336334 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4147391 |
| concepts[8].display_name | Gradient noise |
| concepts[9].id | https://openalex.org/C28490314 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36956724524497986 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[9].display_name | Speech recognition |
| concepts[10].id | https://openalex.org/C187612029 |
| concepts[10].level | 4 |
| concepts[10].score | 0.2903691530227661 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17083130 |
| concepts[10].display_name | Noise floor |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.27224084734916687 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.22629085183143616 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13740694522857666 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10277777910232544 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8178557753562927 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/wiener-filter |
| keywords[1].score | 0.784011721611023 |
| keywords[1].display_name | Wiener filter |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.6759214997291565 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/noise-reduction |
| keywords[3].score | 0.6536223888397217 |
| keywords[3].display_name | Noise reduction |
| keywords[4].id | https://openalex.org/keywords/value-noise |
| keywords[4].score | 0.4708245098590851 |
| keywords[4].display_name | Value noise |
| keywords[5].id | https://openalex.org/keywords/reduction |
| keywords[5].score | 0.4674544930458069 |
| keywords[5].display_name | Reduction (mathematics) |
| keywords[6].id | https://openalex.org/keywords/noise-measurement |
| keywords[6].score | 0.4539071321487427 |
| keywords[6].display_name | Noise measurement |
| keywords[7].id | https://openalex.org/keywords/filter |
| keywords[7].score | 0.44617021083831787 |
| keywords[7].display_name | Filter (signal processing) |
| keywords[8].id | https://openalex.org/keywords/gradient-noise |
| keywords[8].score | 0.4274422228336334 |
| keywords[8].display_name | Gradient noise |
| keywords[9].id | https://openalex.org/keywords/speech-recognition |
| keywords[9].score | 0.36956724524497986 |
| keywords[9].display_name | Speech recognition |
| keywords[10].id | https://openalex.org/keywords/noise-floor |
| keywords[10].score | 0.2903691530227661 |
| keywords[10].display_name | Noise floor |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.27224084734916687 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.22629085183143616 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.13740694522857666 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/computer-vision |
| keywords[14].score | 0.10277777910232544 |
| keywords[14].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.14569/ijacsa.2022.0130251 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S23629721 |
| locations[0].source.issn | 2156-5570, 2158-107X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2156-5570 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Advanced Computer Science and Applications |
| locations[0].source.host_organization | https://openalex.org/P4310311819 |
| locations[0].source.host_organization_name | Science and Information Organization |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311819 |
| locations[0].source.host_organization_lineage_names | Science and Information Organization |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://thesai.org/Downloads/Volume13No2/Paper_51-Implementation_of_Modified_Wiener_Filtering.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advanced Computer Science and Applications |
| locations[0].landing_page_url | https://doi.org/10.14569/ijacsa.2022.0130251 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101757058 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8358-4106 |
| authorships[0].author.display_name | C. Ramesh Kumar |
| authorships[0].affiliations[0].raw_affiliation_string | Professor, Department of Electronics and Communication Engineering |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Electronics and Communication Engineering |
| authorships[0].affiliations[2].raw_affiliation_string | Assistant Professor, Panimalar Engineering College, Chennai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | C. Ramesh Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Assistant Professor, Panimalar Engineering College, Chennai, Department of Electronics and Communication Engineering, Professor, Department of Electronics and Communication Engineering |
| authorships[1].author.id | https://openalex.org/A5023574716 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | M. Chitra |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19149307 |
| authorships[1].affiliations[0].raw_affiliation_string | Panimalar Institute of Technology, Chennai, Tamil Nadu, India |
| authorships[1].institutions[0].id | https://openalex.org/I19149307 |
| authorships[1].institutions[0].ror | https://ror.org/04zp24820 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I19149307 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Chennai Mathematical Institute |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | M. P. Chitra |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Panimalar Institute of Technology, Chennai, Tamil Nadu, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://thesai.org/Downloads/Volume13No2/Paper_51-Implementation_of_Modified_Wiener_Filtering.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Implementation of Modified Wiener Filtering in Frequency Domain in Speech Enhancement |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W3125397569, https://openalex.org/W2098539690, https://openalex.org/W4226451553, https://openalex.org/W2116036791, https://openalex.org/W2162712524, https://openalex.org/W2588855097, https://openalex.org/W2032021057, https://openalex.org/W2170781407, https://openalex.org/W2057119739, https://openalex.org/W3033631740 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.14569/ijacsa.2022.0130251 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S23629721 |
| best_oa_location.source.issn | 2156-5570, 2158-107X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2156-5570 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Advanced Computer Science and Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310311819 |
| best_oa_location.source.host_organization_name | Science and Information Organization |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311819 |
| best_oa_location.source.host_organization_lineage_names | Science and Information Organization |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://thesai.org/Downloads/Volume13No2/Paper_51-Implementation_of_Modified_Wiener_Filtering.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advanced Computer Science and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.14569/ijacsa.2022.0130251 |
| primary_location.id | doi:10.14569/ijacsa.2022.0130251 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S23629721 |
| primary_location.source.issn | 2156-5570, 2158-107X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2156-5570 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Advanced Computer Science and Applications |
| primary_location.source.host_organization | https://openalex.org/P4310311819 |
| primary_location.source.host_organization_name | Science and Information Organization |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311819 |
| primary_location.source.host_organization_lineage_names | Science and Information Organization |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://thesai.org/Downloads/Volume13No2/Paper_51-Implementation_of_Modified_Wiener_Filtering.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advanced Computer Science and Applications |
| primary_location.landing_page_url | https://doi.org/10.14569/ijacsa.2022.0130251 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2097384000, https://openalex.org/W2130693895, https://openalex.org/W1495679096, https://openalex.org/W2158760189, https://openalex.org/W6892501252, https://openalex.org/W6641048963, https://openalex.org/W1960674706, https://openalex.org/W2112507285, https://openalex.org/W2150022510, https://openalex.org/W2121168640, https://openalex.org/W6667548303, https://openalex.org/W2032817878, https://openalex.org/W2158710540, https://openalex.org/W1527803547, https://openalex.org/W2342173864, https://openalex.org/W2047238674, https://openalex.org/W2064434021, https://openalex.org/W6731233319, https://openalex.org/W2156888746, https://openalex.org/W2920550431, https://openalex.org/W4200415282, https://openalex.org/W2068776065, https://openalex.org/W1766888123, https://openalex.org/W2124672476, https://openalex.org/W2064841144 |
| referenced_works_count | 25 |
| abstract_inverted_index.A | 24 |
| abstract_inverted_index.a | 50, 72, 78, 82 |
| abstract_inverted_index.In | 63 |
| abstract_inverted_index.in | 16, 60, 110 |
| abstract_inverted_index.is | 8, 38, 58, 123 |
| abstract_inverted_index.of | 71, 119 |
| abstract_inverted_index.to | 19, 41, 99 |
| abstract_inverted_index.SNR | 118 |
| abstract_inverted_index.The | 0, 87 |
| abstract_inverted_index.and | 34, 81, 104 |
| abstract_inverted_index.are | 75 |
| abstract_inverted_index.can | 92 |
| abstract_inverted_index.for | 53, 112 |
| abstract_inverted_index.new | 51 |
| abstract_inverted_index.one | 39 |
| abstract_inverted_index.the | 29, 64, 69, 94, 117, 120 |
| abstract_inverted_index.two | 121 |
| abstract_inverted_index.way | 52 |
| abstract_inverted_index.Aids | 7 |
| abstract_inverted_index.Many | 11 |
| abstract_inverted_index.SNR, | 37 |
| abstract_inverted_index.been | 14 |
| abstract_inverted_index.gain | 31 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.more | 96 |
| abstract_inverted_index.most | 1 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.with | 77 |
| abstract_inverted_index.After | 107 |
| abstract_inverted_index.Noise | 46, 66, 89 |
| abstract_inverted_index.about | 4 |
| abstract_inverted_index.after | 35 |
| abstract_inverted_index.being | 108 |
| abstract_inverted_index.noise | 56, 84, 95, 115 |
| abstract_inverted_index.seven | 113 |
| abstract_inverted_index.using | 32 |
| abstract_inverted_index.which | 27 |
| abstract_inverted_index.work. | 62 |
| abstract_inverted_index.years | 18 |
| abstract_inverted_index.MATLAB | 101, 111 |
| abstract_inverted_index.Method | 48 |
| abstract_inverted_index.before | 33 |
| abstract_inverted_index.common | 2 |
| abstract_inverted_index.filter | 74 |
| abstract_inverted_index.merged | 76 |
| abstract_inverted_index.method | 91 |
| abstract_inverted_index.noise. | 10, 23, 44 |
| abstract_inverted_index.recent | 17 |
| abstract_inverted_index.reduce | 21, 42, 93 |
| abstract_inverted_index.types, | 116 |
| abstract_inverted_index.wiener | 25, 30, 73 |
| abstract_inverted_index.(MNRM), | 49 |
| abstract_inverted_index.Digital | 5 |
| abstract_inverted_index.Hearing | 6 |
| abstract_inverted_index.filter, | 26 |
| abstract_inverted_index.Modified | 45, 65, 88 |
| abstract_inverted_index.approach | 80 |
| abstract_inverted_index.attempts | 12 |
| abstract_inverted_index.distinct | 114 |
| abstract_inverted_index.feedback | 9, 22, 55 |
| abstract_inverted_index.findings | 105 |
| abstract_inverted_index.modelled | 109 |
| abstract_inverted_index.reducing | 54 |
| abstract_inverted_index.Reduction | 47, 67, 90 |
| abstract_inverted_index.Strategy, | 68 |
| abstract_inverted_index.according | 98 |
| abstract_inverted_index.analysis. | 106 |
| abstract_inverted_index.compared. | 124 |
| abstract_inverted_index.complaint | 3 |
| abstract_inverted_index.filtering | 36 |
| abstract_inverted_index.presented | 59 |
| abstract_inverted_index.technique | 40, 86 |
| abstract_inverted_index.Reduction, | 57 |
| abstract_inverted_index.advantages | 70 |
| abstract_inverted_index.background | 43 |
| abstract_inverted_index.calculates | 28 |
| abstract_inverted_index.twin-stage | 83 |
| abstract_inverted_index.undertaken | 15 |
| abstract_inverted_index.suppression | 85 |
| abstract_inverted_index.programming, | 102 |
| abstract_inverted_index.successfully | 20 |
| abstract_inverted_index.architectures | 122 |
| abstract_inverted_index.comprehensive | 100 |
| abstract_inverted_index.successfully, | 97 |
| abstract_inverted_index.investigation, | 103 |
| abstract_inverted_index.decision-directed | 79 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.37710411 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |