Implementing Active Learning in Cybersecurity: Detecting Anomalies in Redacted Emails Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.00870
Research on email anomaly detection has typically relied on specially prepared datasets that may not adequately reflect the type of data that occurs in industry settings. In our research, at a major financial services company, privacy concerns prevented inspection of the bodies of emails and attachment details (although subject headings and attachment filenames were available). This made labeling possible anomalies in the resulting redacted emails more difficult. Another source of difficulty is the high volume of emails combined with the scarcity of resources making machine learning (ML) a necessity, but also creating a need for more efficient human training of ML models. Active learning (AL) has been proposed as a way to make human training of ML models more efficient. However, the implementation of Active Learning methods is a human-centered AI challenge due to potential human analyst uncertainty, and the labeling task can be further complicated in domains such as the cybersecurity domain (or healthcare, aviation, etc.) where mistakes in labeling can have highly adverse consequences. In this paper we present research results concerning the application of Active Learning to anomaly detection in redacted emails, comparing the utility of different methods for implementing active learning in this context. We evaluate different AL strategies and their impact on resulting model performance. We also examine how ratings of confidence that experts have in their labels can inform AL. The results obtained are discussed in terms of their implications for AL methodology and for the role of experts in model-assisted email anomaly screening.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.00870
- https://arxiv.org/pdf/2303.00870
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323207639
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323207639Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.00870Digital Object Identifier
- Title
-
Implementing Active Learning in Cybersecurity: Detecting Anomalies in Redacted EmailsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-01Full publication date if available
- Authors
-
Mu-Huan, Chung, Lu Wang, Sharon Sharon, LI ., Yuhong Yuhong, Yang Yang, Calvin Giang, Khilan Jerath, Abhay Raman, David Lie, Mark ChignellList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.00870Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.00870Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.00870Direct OA link when available
- Concepts
-
Computer science, Anomaly detection, Context (archaeology), Task (project management), Subject-matter expert, Artificial intelligence, Domain (mathematical analysis), Active learning (machine learning), Deep learning, Supervised learning, Machine learning, Data science, Engineering, Expert system, Paleontology, Mathematical analysis, Systems engineering, Mathematics, Biology, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323207639 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.00870 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.00870 |
| ids.openalex | https://openalex.org/W4323207639 |
| fwci | |
| type | preprint |
| title | Implementing Active Learning in Cybersecurity: Detecting Anomalies in Redacted Emails |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.993399977684021 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9898999929428101 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6873373985290527 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C739882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6682972311973572 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[1].display_name | Anomaly detection |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5905645489692688 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5624414682388306 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C105002631 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5539384484291077 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4833645 |
| concepts[4].display_name | Subject-matter expert |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.48215338587760925 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C36503486 |
| concepts[6].level | 2 |
| concepts[6].score | 0.471014142036438 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[6].display_name | Domain (mathematical analysis) |
| concepts[7].id | https://openalex.org/C77967617 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4430868923664093 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[7].display_name | Active learning (machine learning) |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42551618814468384 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C136389625 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4247910678386688 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[9].display_name | Supervised learning |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38417455554008484 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C2522767166 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34525424242019653 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[11].display_name | Data science |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.15830659866333008 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C58328972 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q184609 |
| concepts[13].display_name | Expert system |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C201995342 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[16].display_name | Systems engineering |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C50644808 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[19].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6873373985290527 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/anomaly-detection |
| keywords[1].score | 0.6682972311973572 |
| keywords[1].display_name | Anomaly detection |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.5905645489692688 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.5624414682388306 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/subject-matter-expert |
| keywords[4].score | 0.5539384484291077 |
| keywords[4].display_name | Subject-matter expert |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.48215338587760925 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/domain |
| keywords[6].score | 0.471014142036438 |
| keywords[6].display_name | Domain (mathematical analysis) |
| keywords[7].id | https://openalex.org/keywords/active-learning |
| keywords[7].score | 0.4430868923664093 |
| keywords[7].display_name | Active learning (machine learning) |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.42551618814468384 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/supervised-learning |
| keywords[9].score | 0.4247910678386688 |
| keywords[9].display_name | Supervised learning |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.38417455554008484 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/data-science |
| keywords[11].score | 0.34525424242019653 |
| keywords[11].display_name | Data science |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.15830659866333008 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.00870 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.00870 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.00870 |
| locations[1].id | doi:10.48550/arxiv.2303.00870 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.00870 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053067592 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mu-Huan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mu-Huan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112627409 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chung |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chung |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100364541 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4016-4096 |
| authorships[2].author.display_name | Lu Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Lu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001978899 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sharon Sharon |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sharon |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5112713534 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | LI . |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5064490152 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yuhong Yuhong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yuhong |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5110754292 |
| authorships[6].author.orcid | https://orcid.org/0009-0008-0615-615X |
| authorships[6].author.display_name | Yang Yang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5007460047 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Calvin Giang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Giang, Calvin |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5048261136 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0518-4227 |
| authorships[8].author.display_name | Khilan Jerath |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jerath, Khilan |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5077865999 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-4193-1464 |
| authorships[9].author.display_name | Abhay Raman |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Raman, Abhay |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5049933072 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-2000-6827 |
| authorships[10].author.display_name | David Lie |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Lie, David |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5039024869 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-8120-6905 |
| authorships[11].author.display_name | Mark Chignell |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Chignell, Mark |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.00870 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-03-05T00:00:00 |
| display_name | Implementing Active Learning in Cybersecurity: Detecting Anomalies in Redacted Emails |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W2105642232, https://openalex.org/W3197833032, https://openalex.org/W4230611425, https://openalex.org/W2731899572, https://openalex.org/W4386081464, https://openalex.org/W4294635752, https://openalex.org/W3207332793, https://openalex.org/W4304166257 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.00870 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.00870 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.00870 |
| primary_location.id | pmh:oai:arXiv.org:2303.00870 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.00870 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.00870 |
| publication_date | 2023-03-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 87, 92, 109, 128 |
| abstract_inverted_index.AI | 130 |
| abstract_inverted_index.AL | 201, 237 |
| abstract_inverted_index.In | 26, 166 |
| abstract_inverted_index.ML | 100, 116 |
| abstract_inverted_index.We | 198, 210 |
| abstract_inverted_index.as | 108, 149 |
| abstract_inverted_index.at | 29 |
| abstract_inverted_index.be | 143 |
| abstract_inverted_index.in | 23, 60, 146, 159, 182, 195, 220, 231, 245 |
| abstract_inverted_index.is | 71, 127 |
| abstract_inverted_index.of | 19, 39, 42, 69, 75, 81, 99, 115, 123, 176, 188, 215, 233, 243 |
| abstract_inverted_index.on | 1, 8, 206 |
| abstract_inverted_index.to | 111, 133, 179 |
| abstract_inverted_index.we | 169 |
| abstract_inverted_index.(or | 153 |
| abstract_inverted_index.AL. | 225 |
| abstract_inverted_index.The | 226 |
| abstract_inverted_index.and | 44, 50, 138, 203, 239 |
| abstract_inverted_index.are | 229 |
| abstract_inverted_index.but | 89 |
| abstract_inverted_index.can | 142, 161, 223 |
| abstract_inverted_index.due | 132 |
| abstract_inverted_index.for | 94, 191, 236, 240 |
| abstract_inverted_index.has | 5, 105 |
| abstract_inverted_index.how | 213 |
| abstract_inverted_index.may | 13 |
| abstract_inverted_index.not | 14 |
| abstract_inverted_index.our | 27 |
| abstract_inverted_index.the | 17, 40, 61, 72, 79, 121, 139, 150, 174, 186, 241 |
| abstract_inverted_index.way | 110 |
| abstract_inverted_index.(AL) | 104 |
| abstract_inverted_index.(ML) | 86 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.also | 90, 211 |
| abstract_inverted_index.been | 106 |
| abstract_inverted_index.data | 20 |
| abstract_inverted_index.have | 162, 219 |
| abstract_inverted_index.high | 73 |
| abstract_inverted_index.made | 56 |
| abstract_inverted_index.make | 112 |
| abstract_inverted_index.more | 65, 95, 118 |
| abstract_inverted_index.need | 93 |
| abstract_inverted_index.role | 242 |
| abstract_inverted_index.such | 148 |
| abstract_inverted_index.task | 141 |
| abstract_inverted_index.that | 12, 21, 217 |
| abstract_inverted_index.this | 167, 196 |
| abstract_inverted_index.type | 18 |
| abstract_inverted_index.were | 53 |
| abstract_inverted_index.with | 78 |
| abstract_inverted_index.email | 2, 247 |
| abstract_inverted_index.etc.) | 156 |
| abstract_inverted_index.human | 97, 113, 135 |
| abstract_inverted_index.major | 31 |
| abstract_inverted_index.model | 208 |
| abstract_inverted_index.paper | 168 |
| abstract_inverted_index.terms | 232 |
| abstract_inverted_index.their | 204, 221, 234 |
| abstract_inverted_index.where | 157 |
| abstract_inverted_index.Active | 102, 124, 177 |
| abstract_inverted_index.active | 193 |
| abstract_inverted_index.bodies | 41 |
| abstract_inverted_index.domain | 152 |
| abstract_inverted_index.emails | 43, 64, 76 |
| abstract_inverted_index.highly | 163 |
| abstract_inverted_index.impact | 205 |
| abstract_inverted_index.inform | 224 |
| abstract_inverted_index.labels | 222 |
| abstract_inverted_index.making | 83 |
| abstract_inverted_index.models | 117 |
| abstract_inverted_index.occurs | 22 |
| abstract_inverted_index.relied | 7 |
| abstract_inverted_index.source | 68 |
| abstract_inverted_index.volume | 74 |
| abstract_inverted_index.Another | 67 |
| abstract_inverted_index.adverse | 164 |
| abstract_inverted_index.analyst | 136 |
| abstract_inverted_index.anomaly | 3, 180, 248 |
| abstract_inverted_index.details | 46 |
| abstract_inverted_index.domains | 147 |
| abstract_inverted_index.emails, | 184 |
| abstract_inverted_index.examine | 212 |
| abstract_inverted_index.experts | 218, 244 |
| abstract_inverted_index.further | 144 |
| abstract_inverted_index.machine | 84 |
| abstract_inverted_index.methods | 126, 190 |
| abstract_inverted_index.models. | 101 |
| abstract_inverted_index.present | 170 |
| abstract_inverted_index.privacy | 35 |
| abstract_inverted_index.ratings | 214 |
| abstract_inverted_index.reflect | 16 |
| abstract_inverted_index.results | 172, 227 |
| abstract_inverted_index.subject | 48 |
| abstract_inverted_index.utility | 187 |
| abstract_inverted_index.However, | 120 |
| abstract_inverted_index.Learning | 125, 178 |
| abstract_inverted_index.Research | 0 |
| abstract_inverted_index.combined | 77 |
| abstract_inverted_index.company, | 34 |
| abstract_inverted_index.concerns | 36 |
| abstract_inverted_index.context. | 197 |
| abstract_inverted_index.creating | 91 |
| abstract_inverted_index.datasets | 11 |
| abstract_inverted_index.evaluate | 199 |
| abstract_inverted_index.headings | 49 |
| abstract_inverted_index.industry | 24 |
| abstract_inverted_index.labeling | 57, 140, 160 |
| abstract_inverted_index.learning | 85, 103, 194 |
| abstract_inverted_index.mistakes | 158 |
| abstract_inverted_index.obtained | 228 |
| abstract_inverted_index.possible | 58 |
| abstract_inverted_index.prepared | 10 |
| abstract_inverted_index.proposed | 107 |
| abstract_inverted_index.redacted | 63, 183 |
| abstract_inverted_index.research | 171 |
| abstract_inverted_index.scarcity | 80 |
| abstract_inverted_index.services | 33 |
| abstract_inverted_index.training | 98, 114 |
| abstract_inverted_index.(although | 47 |
| abstract_inverted_index.anomalies | 59 |
| abstract_inverted_index.aviation, | 155 |
| abstract_inverted_index.challenge | 131 |
| abstract_inverted_index.comparing | 185 |
| abstract_inverted_index.detection | 4, 181 |
| abstract_inverted_index.different | 189, 200 |
| abstract_inverted_index.discussed | 230 |
| abstract_inverted_index.efficient | 96 |
| abstract_inverted_index.filenames | 52 |
| abstract_inverted_index.financial | 32 |
| abstract_inverted_index.potential | 134 |
| abstract_inverted_index.prevented | 37 |
| abstract_inverted_index.research, | 28 |
| abstract_inverted_index.resources | 82 |
| abstract_inverted_index.resulting | 62, 207 |
| abstract_inverted_index.settings. | 25 |
| abstract_inverted_index.specially | 9 |
| abstract_inverted_index.typically | 6 |
| abstract_inverted_index.adequately | 15 |
| abstract_inverted_index.attachment | 45, 51 |
| abstract_inverted_index.concerning | 173 |
| abstract_inverted_index.confidence | 216 |
| abstract_inverted_index.difficult. | 66 |
| abstract_inverted_index.difficulty | 70 |
| abstract_inverted_index.efficient. | 119 |
| abstract_inverted_index.inspection | 38 |
| abstract_inverted_index.necessity, | 88 |
| abstract_inverted_index.screening. | 249 |
| abstract_inverted_index.strategies | 202 |
| abstract_inverted_index.application | 175 |
| abstract_inverted_index.available). | 54 |
| abstract_inverted_index.complicated | 145 |
| abstract_inverted_index.healthcare, | 154 |
| abstract_inverted_index.methodology | 238 |
| abstract_inverted_index.implementing | 192 |
| abstract_inverted_index.implications | 235 |
| abstract_inverted_index.performance. | 209 |
| abstract_inverted_index.uncertainty, | 137 |
| abstract_inverted_index.consequences. | 165 |
| abstract_inverted_index.cybersecurity | 151 |
| abstract_inverted_index.human-centered | 129 |
| abstract_inverted_index.implementation | 122 |
| abstract_inverted_index.model-assisted | 246 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |