Implementing artificial intelligence for electrocardiogram interpretation: A case study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.jemrpt.2024.100132
Background: Artificial intelligence (AI) is expected to have a growing role in medical diagnostic interpretation and existing programs should be challenged with difficult cases in clinical practice senerios. An isolated posterior myocardial infarction (MI) is suggested by ST segment depression in the anteroseptal leads on a standard 12-lead electrocardiogram (ECG) and confirmed by the presence of 0.5mm ST segment elevation in any of the posterior leads (V7-V9). Isolated posterior MI is rare (potentially <4 % of all MIs). Case report: We present a case of a 79-year-old man who presented with intermittent chest pain and subtle ECG changes concerning for a posterior MI. His catheterization images confirm a completely occluded LCx artery. We also present the AI analysis of the ECG's crucial for making the diagnosis in this case.Why should an Emergency Physician be aware of this?Given the diagnostic challenge of posterior wall MIs with a standard 12-lead ECG, clinical suspicion for a posterior MI should remain high with any degree of ST segment depression in the anterior leads and prompt the emergency physician to obtain a posterior ECG. AI-based ECG interpretation was able to determine that this patient was having an occlusive myocardial infarction. We discuss how to utilize the third-party AI for diagnostic aid.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jemrpt.2024.100132
- OA Status
- diamond
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405135308
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405135308Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jemrpt.2024.100132Digital Object Identifier
- Title
-
Implementing artificial intelligence for electrocardiogram interpretation: A case studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-08Full publication date if available
- Authors
-
Jace C. Bradshaw, Emily Nagourney, McKenzie Warshel, Paul Logan WeygandtList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jemrpt.2024.100132Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jemrpt.2024.100132Direct OA link when available
- Concepts
-
Interpretation (philosophy), Artificial intelligence, Computer science, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405135308 |
|---|---|
| doi | https://doi.org/10.1016/j.jemrpt.2024.100132 |
| ids.doi | https://doi.org/10.1016/j.jemrpt.2024.100132 |
| ids.openalex | https://openalex.org/W4405135308 |
| fwci | 0.0 |
| type | article |
| title | Implementing artificial intelligence for electrocardiogram interpretation: A case study |
| biblio.issue | 1 |
| biblio.volume | 4 |
| biblio.last_page | 100132 |
| biblio.first_page | 100132 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10372 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9495999813079834 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Cardiac Imaging and Diagnostics |
| topics[2].id | https://openalex.org/T12419 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9111999869346619 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Phonocardiography and Auscultation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C527412718 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6463621258735657 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q855395 |
| concepts[0].display_name | Interpretation (philosophy) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5141828060150146 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.48487553000450134 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C199360897 |
| concepts[3].level | 1 |
| concepts[3].score | 0.08450084924697876 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[3].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/interpretation |
| keywords[0].score | 0.6463621258735657 |
| keywords[0].display_name | Interpretation (philosophy) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5141828060150146 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.48487553000450134 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/programming-language |
| keywords[3].score | 0.08450084924697876 |
| keywords[3].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.1016/j.jemrpt.2024.100132 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387285679 |
| locations[0].source.issn | 2773-2320 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2773-2320 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JEM Reports |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JEM Reports |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jemrpt.2024.100132 |
| locations[1].id | pmh:oai:doaj.org/article:6cebc2b923a940cd98b99f7f16943cfa |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | JEM Reports, Vol 4, Iss 1, Pp 100132- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/6cebc2b923a940cd98b99f7f16943cfa |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5027067186 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7655-5692 |
| authorships[0].author.display_name | Jace C. Bradshaw |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jace C. Bradshaw |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5115041403 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Emily Nagourney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Emily Nagourney |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5115041404 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9289-929X |
| authorships[2].author.display_name | McKenzie Warshel |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | McKenzie Warshel |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5032878234 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9394-0613 |
| authorships[3].author.display_name | Paul Logan Weygandt |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | P Logan Weygandt |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jemrpt.2024.100132 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Implementing artificial intelligence for electrocardiogram interpretation: A case study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4313320911, https://openalex.org/W4327743144, https://openalex.org/W4245077728, https://openalex.org/W2390279801, https://openalex.org/W2607424049, https://openalex.org/W4390922876, https://openalex.org/W3183204001 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jemrpt.2024.100132 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387285679 |
| best_oa_location.source.issn | 2773-2320 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2773-2320 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JEM Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JEM Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jemrpt.2024.100132 |
| primary_location.id | doi:10.1016/j.jemrpt.2024.100132 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387285679 |
| primary_location.source.issn | 2773-2320 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2773-2320 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JEM Reports |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JEM Reports |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jemrpt.2024.100132 |
| publication_date | 2024-12-08 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2051096706, https://openalex.org/W4293410332, https://openalex.org/W2431622239, https://openalex.org/W2330905130, https://openalex.org/W3213200119, https://openalex.org/W4304588539, https://openalex.org/W1977792494, https://openalex.org/W6858410036, https://openalex.org/W4388596352 |
| referenced_works_count | 9 |
| abstract_inverted_index.% | 74 |
| abstract_inverted_index.a | 8, 45, 82, 85, 100, 107, 145, 152, 176 |
| abstract_inverted_index.<4 | 73 |
| abstract_inverted_index.AI | 116, 202 |
| abstract_inverted_index.An | 28 |
| abstract_inverted_index.MI | 69, 154 |
| abstract_inverted_index.ST | 37, 57, 162 |
| abstract_inverted_index.We | 80, 112, 195 |
| abstract_inverted_index.an | 130, 191 |
| abstract_inverted_index.be | 19, 133 |
| abstract_inverted_index.by | 36, 52 |
| abstract_inverted_index.in | 11, 24, 40, 60, 126, 165 |
| abstract_inverted_index.is | 4, 34, 70 |
| abstract_inverted_index.of | 55, 62, 75, 84, 118, 135, 140, 161 |
| abstract_inverted_index.on | 44 |
| abstract_inverted_index.to | 6, 174, 184, 198 |
| abstract_inverted_index.ECG | 96, 180 |
| abstract_inverted_index.His | 103 |
| abstract_inverted_index.LCx | 110 |
| abstract_inverted_index.MI. | 102 |
| abstract_inverted_index.MIs | 143 |
| abstract_inverted_index.all | 76 |
| abstract_inverted_index.and | 15, 50, 94, 169 |
| abstract_inverted_index.any | 61, 159 |
| abstract_inverted_index.for | 99, 122, 151, 203 |
| abstract_inverted_index.how | 197 |
| abstract_inverted_index.man | 87 |
| abstract_inverted_index.the | 41, 53, 63, 115, 119, 124, 137, 166, 171, 200 |
| abstract_inverted_index.was | 182, 189 |
| abstract_inverted_index.who | 88 |
| abstract_inverted_index.(AI) | 3 |
| abstract_inverted_index.(MI) | 33 |
| abstract_inverted_index.Case | 78 |
| abstract_inverted_index.ECG, | 148 |
| abstract_inverted_index.ECG. | 178 |
| abstract_inverted_index.able | 183 |
| abstract_inverted_index.aid. | 205 |
| abstract_inverted_index.also | 113 |
| abstract_inverted_index.case | 83 |
| abstract_inverted_index.have | 7 |
| abstract_inverted_index.high | 157 |
| abstract_inverted_index.pain | 93 |
| abstract_inverted_index.rare | 71 |
| abstract_inverted_index.role | 10 |
| abstract_inverted_index.that | 186 |
| abstract_inverted_index.this | 127, 187 |
| abstract_inverted_index.wall | 142 |
| abstract_inverted_index.with | 21, 90, 144, 158 |
| abstract_inverted_index.(ECG) | 49 |
| abstract_inverted_index.0.5mm | 56 |
| abstract_inverted_index.ECG's | 120 |
| abstract_inverted_index.MIs). | 77 |
| abstract_inverted_index.aware | 134 |
| abstract_inverted_index.cases | 23 |
| abstract_inverted_index.chest | 92 |
| abstract_inverted_index.leads | 43, 65, 168 |
| abstract_inverted_index.degree | 160 |
| abstract_inverted_index.having | 190 |
| abstract_inverted_index.images | 105 |
| abstract_inverted_index.making | 123 |
| abstract_inverted_index.obtain | 175 |
| abstract_inverted_index.prompt | 170 |
| abstract_inverted_index.remain | 156 |
| abstract_inverted_index.should | 18, 129, 155 |
| abstract_inverted_index.subtle | 95 |
| abstract_inverted_index.12-lead | 47, 147 |
| abstract_inverted_index.artery. | 111 |
| abstract_inverted_index.changes | 97 |
| abstract_inverted_index.confirm | 106 |
| abstract_inverted_index.crucial | 121 |
| abstract_inverted_index.discuss | 196 |
| abstract_inverted_index.growing | 9 |
| abstract_inverted_index.medical | 12 |
| abstract_inverted_index.patient | 188 |
| abstract_inverted_index.present | 81, 114 |
| abstract_inverted_index.report: | 79 |
| abstract_inverted_index.segment | 38, 58, 163 |
| abstract_inverted_index.utilize | 199 |
| abstract_inverted_index.(V7-V9). | 66 |
| abstract_inverted_index.AI-based | 179 |
| abstract_inverted_index.Isolated | 67 |
| abstract_inverted_index.analysis | 117 |
| abstract_inverted_index.anterior | 167 |
| abstract_inverted_index.case.Why | 128 |
| abstract_inverted_index.clinical | 25, 149 |
| abstract_inverted_index.existing | 16 |
| abstract_inverted_index.expected | 5 |
| abstract_inverted_index.isolated | 29 |
| abstract_inverted_index.occluded | 109 |
| abstract_inverted_index.practice | 26 |
| abstract_inverted_index.presence | 54 |
| abstract_inverted_index.programs | 17 |
| abstract_inverted_index.standard | 46, 146 |
| abstract_inverted_index.Emergency | 131 |
| abstract_inverted_index.Physician | 132 |
| abstract_inverted_index.challenge | 139 |
| abstract_inverted_index.confirmed | 51 |
| abstract_inverted_index.determine | 185 |
| abstract_inverted_index.diagnosis | 125 |
| abstract_inverted_index.difficult | 22 |
| abstract_inverted_index.elevation | 59 |
| abstract_inverted_index.emergency | 172 |
| abstract_inverted_index.occlusive | 192 |
| abstract_inverted_index.physician | 173 |
| abstract_inverted_index.posterior | 30, 64, 68, 101, 141, 153, 177 |
| abstract_inverted_index.presented | 89 |
| abstract_inverted_index.senerios. | 27 |
| abstract_inverted_index.suggested | 35 |
| abstract_inverted_index.suspicion | 150 |
| abstract_inverted_index.Artificial | 1 |
| abstract_inverted_index.challenged | 20 |
| abstract_inverted_index.completely | 108 |
| abstract_inverted_index.concerning | 98 |
| abstract_inverted_index.depression | 39, 164 |
| abstract_inverted_index.diagnostic | 13, 138, 204 |
| abstract_inverted_index.infarction | 32 |
| abstract_inverted_index.myocardial | 31, 193 |
| abstract_inverted_index.this?Given | 136 |
| abstract_inverted_index.79-year-old | 86 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.infarction. | 194 |
| abstract_inverted_index.third-party | 201 |
| abstract_inverted_index.(potentially | 72 |
| abstract_inverted_index.anteroseptal | 42 |
| abstract_inverted_index.intelligence | 2 |
| abstract_inverted_index.intermittent | 91 |
| abstract_inverted_index.interpretation | 14, 181 |
| abstract_inverted_index.catheterization | 104 |
| abstract_inverted_index.electrocardiogram | 48 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.45441538 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |