Improved baselines for causal structure learning on interventional data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s11222-023-10257-9
Causal structure learning (CSL) refers to the estimation of causal graphs from data. Causal versions of tools such as ROC curves play a prominent role in empirical assessment of CSL methods and performance is often compared with “random” baselines (such as the diagonal in an ROC analysis). However, such baselines do not take account of constraints arising from the graph context and hence may represent a “low bar”. In this paper, motivated by examples in systems biology, we focus on assessment of CSL methods for multivariate data where part of the graph structure is known via interventional experiments. For this setting, we put forward a new class of baselines called graph-based predictors (GBPs). In contrast to the “random” baseline, GBPs leverage the known graph structure, exploiting simple graph properties to provide improved baselines against which to compare CSL methods. We discuss GBPs in general and provide a detailed study in the context of transitively closed graphs, introducing two conceptually simple baselines for this setting, the observed in-degree predictor (OIP) and the transitivity assuming predictor (TAP). While the former is straightforward to compute, for the latter we propose several simulation strategies. Moreover, we study and compare the proposed predictors theoretically, including a result showing that the OIP outperforms in expectation the “random” baseline on a subclass of latent network models featuring positive correlation among edge probabilities. Using both simulated and real biological data, we show that the proposed GBPs outperform random baselines in practice, often substantially. Some GBPs even outperform standard CSL methods (whilst being computationally cheap in practice). Our results provide a new way to assess CSL methods for interventional data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11222-023-10257-9
- https://link.springer.com/content/pdf/10.1007/s11222-023-10257-9.pdf
- OA Status
- hybrid
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382584581
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382584581Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11222-023-10257-9Digital Object Identifier
- Title
-
Improved baselines for causal structure learning on interventional dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-28Full publication date if available
- Authors
-
Robin Richter, Shankar Bhamidi, Sach MukherjeeList of authors in order
- Landing page
-
https://doi.org/10.1007/s11222-023-10257-9Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11222-023-10257-9.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11222-023-10257-9.pdfDirect OA link when available
- Concepts
-
Computer science, Leverage (statistics), Graph, Random graph, Machine learning, Causal inference, Diagonal, Transitive relation, Data mining, Artificial intelligence, Theoretical computer science, Mathematics, Statistics, Geometry, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382584581 |
|---|---|
| doi | https://doi.org/10.1007/s11222-023-10257-9 |
| ids.doi | https://doi.org/10.1007/s11222-023-10257-9 |
| ids.openalex | https://openalex.org/W4382584581 |
| fwci | 0.0 |
| type | article |
| title | Improved baselines for causal structure learning on interventional data |
| biblio.issue | 5 |
| biblio.volume | 33 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T10845 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9781000018119812 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Advanced Causal Inference Techniques |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9520999789237976 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list.value | 2090 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2690 |
| apc_paid.value | 2090 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2690 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6863160133361816 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153083717 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6053548455238342 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[1].display_name | Leverage (statistics) |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5092328786849976 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C47458327 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4888760447502136 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q910404 |
| concepts[3].display_name | Random graph |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4755028188228607 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C158600405 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4470418095588684 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[5].display_name | Causal inference |
| concepts[6].id | https://openalex.org/C130367717 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42838144302368164 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189791 |
| concepts[6].display_name | Diagonal |
| concepts[7].id | https://openalex.org/C191399111 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41520702838897705 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q64861 |
| concepts[7].display_name | Transitive relation |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3981269299983978 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38526061177253723 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3700597584247589 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.18797782063484192 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1738063395023346 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6863160133361816 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/leverage |
| keywords[1].score | 0.6053548455238342 |
| keywords[1].display_name | Leverage (statistics) |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5092328786849976 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/random-graph |
| keywords[3].score | 0.4888760447502136 |
| keywords[3].display_name | Random graph |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4755028188228607 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/causal-inference |
| keywords[5].score | 0.4470418095588684 |
| keywords[5].display_name | Causal inference |
| keywords[6].id | https://openalex.org/keywords/diagonal |
| keywords[6].score | 0.42838144302368164 |
| keywords[6].display_name | Diagonal |
| keywords[7].id | https://openalex.org/keywords/transitive-relation |
| keywords[7].score | 0.41520702838897705 |
| keywords[7].display_name | Transitive relation |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3981269299983978 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.38526061177253723 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.3700597584247589 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.18797782063484192 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.1738063395023346 |
| keywords[12].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1007/s11222-023-10257-9 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5437875 |
| locations[0].source.issn | 0960-3174, 1573-1375 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0960-3174 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Statistics and Computing |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11222-023-10257-9.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Statistics and Computing |
| locations[0].landing_page_url | https://doi.org/10.1007/s11222-023-10257-9 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5028444515 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0329-1355 |
| authorships[0].author.display_name | Robin Richter |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2801533059 |
| authorships[0].affiliations[0].raw_affiliation_string | Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Venusberg-Campus 1/99, 53111, Bonn, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I2801533059 |
| authorships[0].institutions[0].ror | https://ror.org/043j0f473 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2801533059, https://openalex.org/I4411590659 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | German Center for Neurodegenerative Diseases |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Robin Richter |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Venusberg-Campus 1/99, 53111, Bonn, Germany |
| authorships[1].author.id | https://openalex.org/A5032815468 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-3953-936X |
| authorships[1].author.display_name | Shankar Bhamidi |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114027177 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics and Operations Research, University of North Carolina, 304 Hanes Hall, Chapel Hill, 27599-3260, NC, USA |
| authorships[1].institutions[0].id | https://openalex.org/I114027177 |
| authorships[1].institutions[0].ror | https://ror.org/0130frc33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114027177 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of North Carolina at Chapel Hill |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shankar Bhamidi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics and Operations Research, University of North Carolina, 304 Hanes Hall, Chapel Hill, 27599-3260, NC, USA |
| authorships[2].author.id | https://openalex.org/A5112866063 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sach Mukherjee |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2801533059 |
| authorships[2].affiliations[0].raw_affiliation_string | Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Venusberg-Campus 1/99, 53111, Bonn, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I2801533059 |
| authorships[2].institutions[0].ror | https://ror.org/043j0f473 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2801533059, https://openalex.org/I4411590659 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | German Center for Neurodegenerative Diseases |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sach Mukherjee |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Venusberg-Campus 1/99, 53111, Bonn, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11222-023-10257-9.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improved baselines for causal structure learning on interventional data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W4312527695, https://openalex.org/W2361167282, https://openalex.org/W2091342995, https://openalex.org/W1528932152, https://openalex.org/W1677394555, https://openalex.org/W3007067598, https://openalex.org/W1963504579, https://openalex.org/W2359420171, https://openalex.org/W2271118953, https://openalex.org/W1995994550 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s11222-023-10257-9 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5437875 |
| best_oa_location.source.issn | 0960-3174, 1573-1375 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0960-3174 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Statistics and Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11222-023-10257-9.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Statistics and Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11222-023-10257-9 |
| primary_location.id | doi:10.1007/s11222-023-10257-9 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5437875 |
| primary_location.source.issn | 0960-3174, 1573-1375 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0960-3174 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Statistics and Computing |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11222-023-10257-9.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Statistics and Computing |
| primary_location.landing_page_url | https://doi.org/10.1007/s11222-023-10257-9 |
| publication_date | 2023-06-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2025221219, https://openalex.org/W2131706188, https://openalex.org/W1978479505, https://openalex.org/W2950850272, https://openalex.org/W2163687466, https://openalex.org/W2561754210, https://openalex.org/W2774217687, https://openalex.org/W2127048411, https://openalex.org/W2964035435, https://openalex.org/W4236051973, https://openalex.org/W2157825442, https://openalex.org/W2618817116, https://openalex.org/W2280966365, https://openalex.org/W2940837786, https://openalex.org/W2066459332, https://openalex.org/W2108723074, https://openalex.org/W2115984935, https://openalex.org/W2109767783, https://openalex.org/W1994267372, https://openalex.org/W2110089205, https://openalex.org/W2050502901, https://openalex.org/W2460828264, https://openalex.org/W2033193852, https://openalex.org/W2095293504, https://openalex.org/W1508717233, https://openalex.org/W2143891888, https://openalex.org/W2790376986, https://openalex.org/W2094189284, https://openalex.org/W2011173182, https://openalex.org/W2964243609, https://openalex.org/W2073307618, https://openalex.org/W2913354234, https://openalex.org/W2026592619, https://openalex.org/W2137752074, https://openalex.org/W4302423442, https://openalex.org/W4206410176, https://openalex.org/W3102641634, https://openalex.org/W3105157747, https://openalex.org/W2612690371, https://openalex.org/W3104000671, https://openalex.org/W3103539622 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 23, 66, 105, 147, 201, 214, 262 |
| abstract_inverted_index.In | 69, 114 |
| abstract_inverted_index.We | 140 |
| abstract_inverted_index.an | 45 |
| abstract_inverted_index.as | 19, 41 |
| abstract_inverted_index.by | 73 |
| abstract_inverted_index.do | 51 |
| abstract_inverted_index.in | 26, 44, 75, 143, 150, 208, 242, 257 |
| abstract_inverted_index.is | 34, 94, 179 |
| abstract_inverted_index.of | 9, 16, 29, 55, 82, 90, 108, 153, 216 |
| abstract_inverted_index.on | 80, 213 |
| abstract_inverted_index.to | 6, 116, 130, 136, 181, 265 |
| abstract_inverted_index.we | 78, 102, 186, 192, 233 |
| abstract_inverted_index.CSL | 30, 83, 138, 251, 267 |
| abstract_inverted_index.For | 99 |
| abstract_inverted_index.OIP | 206 |
| abstract_inverted_index.Our | 259 |
| abstract_inverted_index.ROC | 20, 46 |
| abstract_inverted_index.and | 32, 62, 145, 170, 194, 229 |
| abstract_inverted_index.for | 85, 162, 183, 269 |
| abstract_inverted_index.may | 64 |
| abstract_inverted_index.new | 106, 263 |
| abstract_inverted_index.not | 52 |
| abstract_inverted_index.put | 103 |
| abstract_inverted_index.the | 7, 42, 59, 91, 117, 122, 151, 165, 171, 177, 184, 196, 205, 210, 236 |
| abstract_inverted_index.two | 158 |
| abstract_inverted_index.via | 96 |
| abstract_inverted_index.way | 264 |
| abstract_inverted_index.GBPs | 120, 142, 238, 247 |
| abstract_inverted_index.Some | 246 |
| abstract_inverted_index.both | 227 |
| abstract_inverted_index.data | 87 |
| abstract_inverted_index.edge | 224 |
| abstract_inverted_index.even | 248 |
| abstract_inverted_index.from | 12, 58 |
| abstract_inverted_index.part | 89 |
| abstract_inverted_index.play | 22 |
| abstract_inverted_index.real | 230 |
| abstract_inverted_index.role | 25 |
| abstract_inverted_index.show | 234 |
| abstract_inverted_index.such | 18, 49 |
| abstract_inverted_index.take | 53 |
| abstract_inverted_index.that | 204, 235 |
| abstract_inverted_index.this | 70, 100, 163 |
| abstract_inverted_index.with | 37 |
| abstract_inverted_index.(CSL) | 4 |
| abstract_inverted_index.(OIP) | 169 |
| abstract_inverted_index.(such | 40 |
| abstract_inverted_index.Using | 226 |
| abstract_inverted_index.While | 176 |
| abstract_inverted_index.among | 223 |
| abstract_inverted_index.being | 254 |
| abstract_inverted_index.cheap | 256 |
| abstract_inverted_index.class | 107 |
| abstract_inverted_index.data, | 232 |
| abstract_inverted_index.data. | 13, 271 |
| abstract_inverted_index.focus | 79 |
| abstract_inverted_index.graph | 60, 92, 124, 128 |
| abstract_inverted_index.hence | 63 |
| abstract_inverted_index.known | 95, 123 |
| abstract_inverted_index.often | 35, 244 |
| abstract_inverted_index.study | 149, 193 |
| abstract_inverted_index.tools | 17 |
| abstract_inverted_index.where | 88 |
| abstract_inverted_index.which | 135 |
| abstract_inverted_index.(TAP). | 175 |
| abstract_inverted_index.Causal | 1, 14 |
| abstract_inverted_index.assess | 266 |
| abstract_inverted_index.called | 110 |
| abstract_inverted_index.causal | 10 |
| abstract_inverted_index.closed | 155 |
| abstract_inverted_index.curves | 21 |
| abstract_inverted_index.former | 178 |
| abstract_inverted_index.graphs | 11 |
| abstract_inverted_index.latent | 217 |
| abstract_inverted_index.latter | 185 |
| abstract_inverted_index.models | 219 |
| abstract_inverted_index.paper, | 71 |
| abstract_inverted_index.random | 240 |
| abstract_inverted_index.refers | 5 |
| abstract_inverted_index.result | 202 |
| abstract_inverted_index.simple | 127, 160 |
| abstract_inverted_index.“low | 67 |
| abstract_inverted_index.(GBPs). | 113 |
| abstract_inverted_index.(whilst | 253 |
| abstract_inverted_index.account | 54 |
| abstract_inverted_index.against | 134 |
| abstract_inverted_index.arising | 57 |
| abstract_inverted_index.bar”. | 68 |
| abstract_inverted_index.compare | 137, 195 |
| abstract_inverted_index.context | 61, 152 |
| abstract_inverted_index.discuss | 141 |
| abstract_inverted_index.forward | 104 |
| abstract_inverted_index.general | 144 |
| abstract_inverted_index.graphs, | 156 |
| abstract_inverted_index.methods | 31, 84, 252, 268 |
| abstract_inverted_index.network | 218 |
| abstract_inverted_index.propose | 187 |
| abstract_inverted_index.provide | 131, 146, 261 |
| abstract_inverted_index.results | 260 |
| abstract_inverted_index.several | 188 |
| abstract_inverted_index.showing | 203 |
| abstract_inverted_index.systems | 76 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 48 |
| abstract_inverted_index.assuming | 173 |
| abstract_inverted_index.baseline | 212 |
| abstract_inverted_index.biology, | 77 |
| abstract_inverted_index.compared | 36 |
| abstract_inverted_index.compute, | 182 |
| abstract_inverted_index.contrast | 115 |
| abstract_inverted_index.detailed | 148 |
| abstract_inverted_index.diagonal | 43 |
| abstract_inverted_index.examples | 74 |
| abstract_inverted_index.improved | 132 |
| abstract_inverted_index.learning | 3 |
| abstract_inverted_index.leverage | 121 |
| abstract_inverted_index.methods. | 139 |
| abstract_inverted_index.observed | 166 |
| abstract_inverted_index.positive | 221 |
| abstract_inverted_index.proposed | 197, 237 |
| abstract_inverted_index.setting, | 101, 164 |
| abstract_inverted_index.standard | 250 |
| abstract_inverted_index.subclass | 215 |
| abstract_inverted_index.versions | 15 |
| abstract_inverted_index.Moreover, | 191 |
| abstract_inverted_index.baseline, | 119 |
| abstract_inverted_index.baselines | 39, 50, 109, 133, 161, 241 |
| abstract_inverted_index.empirical | 27 |
| abstract_inverted_index.featuring | 220 |
| abstract_inverted_index.in-degree | 167 |
| abstract_inverted_index.including | 200 |
| abstract_inverted_index.motivated | 72 |
| abstract_inverted_index.practice, | 243 |
| abstract_inverted_index.predictor | 168, 174 |
| abstract_inverted_index.prominent | 24 |
| abstract_inverted_index.represent | 65 |
| abstract_inverted_index.simulated | 228 |
| abstract_inverted_index.structure | 2, 93 |
| abstract_inverted_index.analysis). | 47 |
| abstract_inverted_index.assessment | 28, 81 |
| abstract_inverted_index.biological | 231 |
| abstract_inverted_index.estimation | 8 |
| abstract_inverted_index.exploiting | 126 |
| abstract_inverted_index.outperform | 239, 249 |
| abstract_inverted_index.practice). | 258 |
| abstract_inverted_index.predictors | 112, 198 |
| abstract_inverted_index.properties | 129 |
| abstract_inverted_index.simulation | 189 |
| abstract_inverted_index.structure, | 125 |
| abstract_inverted_index.constraints | 56 |
| abstract_inverted_index.correlation | 222 |
| abstract_inverted_index.expectation | 209 |
| abstract_inverted_index.graph-based | 111 |
| abstract_inverted_index.introducing | 157 |
| abstract_inverted_index.outperforms | 207 |
| abstract_inverted_index.performance | 33 |
| abstract_inverted_index.strategies. | 190 |
| abstract_inverted_index.conceptually | 159 |
| abstract_inverted_index.experiments. | 98 |
| abstract_inverted_index.multivariate | 86 |
| abstract_inverted_index.transitively | 154 |
| abstract_inverted_index.transitivity | 172 |
| abstract_inverted_index.“random” | 38, 118, 211 |
| abstract_inverted_index.interventional | 97, 270 |
| abstract_inverted_index.probabilities. | 225 |
| abstract_inverted_index.substantially. | 245 |
| abstract_inverted_index.theoretically, | 199 |
| abstract_inverted_index.computationally | 255 |
| abstract_inverted_index.straightforward | 180 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.08083819 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |