Improved Coreference Resolution Using Cognitive Insights Article Swipe
Coreference resolution is the task of extracting referential expressions, or mentions, in text and clustering these by the entity or concept they refer to. The sustained research interest in the task reflects the richness of reference expression usage in natural language and the difficulty in encoding insights from linguistic and cognitive theories effectively. \t\t\t\t\t In this thesis, we design and implement LIMERIC, a state-of-the-art coreference resolution engine. LIMERIC naturally incorporates both non-local decoding and entity-level modelling to achieve the highly competitive benchmark performance of 64.22% and 59.99% on the CoNLL-2012 benchmark with a simple model and a baseline feature set. As well as strong performance, a key contribution of this work is a reconceptualisation of the coreference task. We draw an analogy between shift-reduce parsing and coreference resolution to develop an algorithm which naturally mimics cognitive models of human discourse processing. \t \t\t\t\t In our feature development work, we leverage insights from cognitive theories to improve our modelling. Each contribution achieves statistically significant improvements and sum to gains of 1.65% and 1.66% on the CoNLL-2012 benchmark, yielding performance values of 65.76% and 61.27%. For each novel feature we propose, we contribute an accompanying analysis so as to better understand how cognitive theories apply to real language data. \t\t\t\t\t LIMERIC is at once a platform for exploring cognitive insights into coreference and a viable alternative to current systems. We are excited by the promise of incorporating our and further cognitive insights into more complex frameworks since this has the potential to both improve the performance of computational models, as well as our understanding of the mechanisms underpinning human reference resolution.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://hdl.handle.net/2123/15468
- http://hdl.handle.net/2123/15468
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2517924979
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2517924979Canonical identifier for this work in OpenAlex
- Title
-
Improved Coreference Resolution Using Cognitive InsightsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-11Full publication date if available
- Authors
-
Kellie WebsterList of authors in order
- Landing page
-
https://hdl.handle.net/2123/15468Publisher landing page
- PDF URL
-
https://hdl.handle.net/2123/15468Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/2123/15468Direct OA link when available
- Concepts
-
Coreference, Cognition, Computer science, Resolution (logic), Artificial intelligence, Natural language processing, Cognitive psychology, Psychology, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2517924979 |
|---|---|
| doi | |
| ids.mag | 2517924979 |
| ids.openalex | https://openalex.org/W2517924979 |
| fwci | 0.0 |
| type | article |
| title | Improved Coreference Resolution Using Cognitive Insights |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11902 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6037999987602234 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.5224999785423279 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C28076734 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7279272675514221 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q63087 |
| concepts[0].display_name | Coreference |
| concepts[1].id | https://openalex.org/C169900460 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5480881929397583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[1].display_name | Cognition |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5059022307395935 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C138268822 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4624481499195099 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[3].display_name | Resolution (logic) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46187758445739746 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3904699385166168 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C180747234 |
| concepts[6].level | 1 |
| concepts[6].score | 0.387408971786499 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[6].display_name | Cognitive psychology |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3316824734210968 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C169760540 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[8].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/coreference |
| keywords[0].score | 0.7279272675514221 |
| keywords[0].display_name | Coreference |
| keywords[1].id | https://openalex.org/keywords/cognition |
| keywords[1].score | 0.5480881929397583 |
| keywords[1].display_name | Cognition |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5059022307395935 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/resolution |
| keywords[3].score | 0.4624481499195099 |
| keywords[3].display_name | Resolution (logic) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.46187758445739746 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.3904699385166168 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[6].score | 0.387408971786499 |
| keywords[6].display_name | Cognitive psychology |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.3316824734210968 |
| keywords[7].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:ses.library.usyd.edu.au:2123/15468 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402414 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The Sydney eScholarship Repository (The University of Sydney) |
| locations[0].source.host_organization | https://openalex.org/I129604602 |
| locations[0].source.host_organization_name | University of Sydney |
| locations[0].source.host_organization_lineage | https://openalex.org/I129604602 |
| locations[0].license | |
| locations[0].pdf_url | http://hdl.handle.net/2123/15468 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Thesis |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://hdl.handle.net/2123/15468 |
| locations[1].id | mag:2517924979 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://ses.library.usyd.edu.au/handle/2123/15468 |
| authorships[0].author.id | https://openalex.org/A5088842522 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kellie Webster |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kellie Webster |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/2123/15468 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improved Coreference Resolution Using Cognitive Insights |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T11902 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6037999987602234 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Intelligent Tutoring Systems and Adaptive Learning |
| related_works | https://openalex.org/W2380610138, https://openalex.org/W2993795562, https://openalex.org/W2753680149, https://openalex.org/W1961722061, https://openalex.org/W2205554523, https://openalex.org/W2740479527, https://openalex.org/W2227889443, https://openalex.org/W2378186137, https://openalex.org/W1509033667, https://openalex.org/W3006071627, https://openalex.org/W2525170126, https://openalex.org/W2122373230, https://openalex.org/W1936233311, https://openalex.org/W3118588981, https://openalex.org/W2476201665, https://openalex.org/W2888648532, https://openalex.org/W1519661763, https://openalex.org/W2547426899, https://openalex.org/W1498581887, https://openalex.org/W2500386386 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:ses.library.usyd.edu.au:2123/15468 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402414 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | The Sydney eScholarship Repository (The University of Sydney) |
| best_oa_location.source.host_organization | https://openalex.org/I129604602 |
| best_oa_location.source.host_organization_name | University of Sydney |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I129604602 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://hdl.handle.net/2123/15468 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Thesis |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/2123/15468 |
| primary_location.id | pmh:oai:ses.library.usyd.edu.au:2123/15468 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402414 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The Sydney eScholarship Repository (The University of Sydney) |
| primary_location.source.host_organization | https://openalex.org/I129604602 |
| primary_location.source.host_organization_name | University of Sydney |
| primary_location.source.host_organization_lineage | https://openalex.org/I129604602 |
| primary_location.license | |
| primary_location.pdf_url | http://hdl.handle.net/2123/15468 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Thesis |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://hdl.handle.net/2123/15468 |
| publication_date | 2016-01-11 |
| publication_year | 2016 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 62, 92, 96, 105, 112, 212, 221 |
| abstract_inverted_index.As | 100 |
| abstract_inverted_index.In | 54, 143 |
| abstract_inverted_index.We | 118, 227 |
| abstract_inverted_index.\t | 141 |
| abstract_inverted_index.an | 120, 130, 191 |
| abstract_inverted_index.as | 102, 195, 257, 259 |
| abstract_inverted_index.at | 210 |
| abstract_inverted_index.by | 16, 230 |
| abstract_inverted_index.in | 11, 28, 38, 44 |
| abstract_inverted_index.is | 2, 111, 209 |
| abstract_inverted_index.of | 5, 34, 83, 108, 114, 137, 168, 179, 233, 254, 262 |
| abstract_inverted_index.on | 87, 172 |
| abstract_inverted_index.or | 9, 19 |
| abstract_inverted_index.so | 194 |
| abstract_inverted_index.to | 76, 128, 154, 166, 196, 203, 224, 249 |
| abstract_inverted_index.we | 57, 148, 187, 189 |
| abstract_inverted_index.For | 183 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.and | 13, 41, 49, 59, 73, 85, 95, 125, 164, 170, 181, 220, 236 |
| abstract_inverted_index.are | 228 |
| abstract_inverted_index.for | 214 |
| abstract_inverted_index.has | 246 |
| abstract_inverted_index.how | 199 |
| abstract_inverted_index.key | 106 |
| abstract_inverted_index.our | 144, 156, 235, 260 |
| abstract_inverted_index.sum | 165 |
| abstract_inverted_index.the | 3, 17, 29, 32, 42, 78, 88, 115, 173, 231, 247, 252, 263 |
| abstract_inverted_index.to. | 23 |
| abstract_inverted_index.Each | 158 |
| abstract_inverted_index.both | 70, 250 |
| abstract_inverted_index.draw | 119 |
| abstract_inverted_index.each | 184 |
| abstract_inverted_index.from | 47, 151 |
| abstract_inverted_index.into | 218, 240 |
| abstract_inverted_index.more | 241 |
| abstract_inverted_index.once | 211 |
| abstract_inverted_index.real | 204 |
| abstract_inverted_index.set. | 99 |
| abstract_inverted_index.task | 4, 30 |
| abstract_inverted_index.text | 12 |
| abstract_inverted_index.they | 21 |
| abstract_inverted_index.this | 55, 109, 245 |
| abstract_inverted_index.well | 101, 258 |
| abstract_inverted_index.with | 91 |
| abstract_inverted_index.work | 110 |
| abstract_inverted_index.1.65% | 169 |
| abstract_inverted_index.1.66% | 171 |
| abstract_inverted_index.apply | 202 |
| abstract_inverted_index.data. | 206 |
| abstract_inverted_index.gains | 167 |
| abstract_inverted_index.human | 138, 266 |
| abstract_inverted_index.model | 94 |
| abstract_inverted_index.novel | 185 |
| abstract_inverted_index.refer | 22 |
| abstract_inverted_index.since | 244 |
| abstract_inverted_index.task. | 117 |
| abstract_inverted_index.these | 15 |
| abstract_inverted_index.usage | 37 |
| abstract_inverted_index.which | 132 |
| abstract_inverted_index.work, | 147 |
| abstract_inverted_index.59.99% | 86 |
| abstract_inverted_index.64.22% | 84 |
| abstract_inverted_index.65.76% | 180 |
| abstract_inverted_index.better | 197 |
| abstract_inverted_index.design | 58 |
| abstract_inverted_index.entity | 18 |
| abstract_inverted_index.highly | 79 |
| abstract_inverted_index.mimics | 134 |
| abstract_inverted_index.models | 136 |
| abstract_inverted_index.simple | 93 |
| abstract_inverted_index.strong | 103 |
| abstract_inverted_index.values | 178 |
| abstract_inverted_index.viable | 222 |
| abstract_inverted_index.61.27%. | 182 |
| abstract_inverted_index.LIMERIC | 67, 208 |
| abstract_inverted_index.achieve | 77 |
| abstract_inverted_index.analogy | 121 |
| abstract_inverted_index.between | 122 |
| abstract_inverted_index.complex | 242 |
| abstract_inverted_index.concept | 20 |
| abstract_inverted_index.current | 225 |
| abstract_inverted_index.develop | 129 |
| abstract_inverted_index.engine. | 66 |
| abstract_inverted_index.excited | 229 |
| abstract_inverted_index.feature | 98, 145, 186 |
| abstract_inverted_index.further | 237 |
| abstract_inverted_index.improve | 155, 251 |
| abstract_inverted_index.models, | 256 |
| abstract_inverted_index.natural | 39 |
| abstract_inverted_index.parsing | 124 |
| abstract_inverted_index.promise | 232 |
| abstract_inverted_index.thesis, | 56 |
| abstract_inverted_index.LIMERIC, | 61 |
| abstract_inverted_index.\t\t\t\t | 142 |
| abstract_inverted_index.achieves | 160 |
| abstract_inverted_index.analysis | 193 |
| abstract_inverted_index.baseline | 97 |
| abstract_inverted_index.decoding | 72 |
| abstract_inverted_index.encoding | 45 |
| abstract_inverted_index.insights | 46, 150, 217, 239 |
| abstract_inverted_index.interest | 27 |
| abstract_inverted_index.language | 40, 205 |
| abstract_inverted_index.leverage | 149 |
| abstract_inverted_index.platform | 213 |
| abstract_inverted_index.propose, | 188 |
| abstract_inverted_index.reflects | 31 |
| abstract_inverted_index.research | 26 |
| abstract_inverted_index.richness | 33 |
| abstract_inverted_index.systems. | 226 |
| abstract_inverted_index.theories | 51, 153, 201 |
| abstract_inverted_index.yielding | 176 |
| abstract_inverted_index.algorithm | 131 |
| abstract_inverted_index.benchmark | 81, 90 |
| abstract_inverted_index.cognitive | 50, 135, 152, 200, 216, 238 |
| abstract_inverted_index.discourse | 139 |
| abstract_inverted_index.exploring | 215 |
| abstract_inverted_index.implement | 60 |
| abstract_inverted_index.mentions, | 10 |
| abstract_inverted_index.modelling | 75 |
| abstract_inverted_index.naturally | 68, 133 |
| abstract_inverted_index.non-local | 71 |
| abstract_inverted_index.potential | 248 |
| abstract_inverted_index.reference | 35, 267 |
| abstract_inverted_index.sustained | 25 |
| abstract_inverted_index.CoNLL-2012 | 89, 174 |
| abstract_inverted_index.\t\t\t\t\t | 53, 207 |
| abstract_inverted_index.benchmark, | 175 |
| abstract_inverted_index.clustering | 14 |
| abstract_inverted_index.contribute | 190 |
| abstract_inverted_index.difficulty | 43 |
| abstract_inverted_index.expression | 36 |
| abstract_inverted_index.extracting | 6 |
| abstract_inverted_index.frameworks | 243 |
| abstract_inverted_index.linguistic | 48 |
| abstract_inverted_index.mechanisms | 264 |
| abstract_inverted_index.modelling. | 157 |
| abstract_inverted_index.resolution | 1, 65, 127 |
| abstract_inverted_index.understand | 198 |
| abstract_inverted_index.Coreference | 0 |
| abstract_inverted_index.alternative | 223 |
| abstract_inverted_index.competitive | 80 |
| abstract_inverted_index.coreference | 64, 116, 126, 219 |
| abstract_inverted_index.development | 146 |
| abstract_inverted_index.performance | 82, 177, 253 |
| abstract_inverted_index.processing. | 140 |
| abstract_inverted_index.referential | 7 |
| abstract_inverted_index.resolution. | 268 |
| abstract_inverted_index.significant | 162 |
| abstract_inverted_index.accompanying | 192 |
| abstract_inverted_index.contribution | 107, 159 |
| abstract_inverted_index.effectively. | 52 |
| abstract_inverted_index.entity-level | 74 |
| abstract_inverted_index.expressions, | 8 |
| abstract_inverted_index.improvements | 163 |
| abstract_inverted_index.incorporates | 69 |
| abstract_inverted_index.performance, | 104 |
| abstract_inverted_index.shift-reduce | 123 |
| abstract_inverted_index.underpinning | 265 |
| abstract_inverted_index.computational | 255 |
| abstract_inverted_index.incorporating | 234 |
| abstract_inverted_index.statistically | 161 |
| abstract_inverted_index.understanding | 261 |
| abstract_inverted_index.state-of-the-art | 63 |
| abstract_inverted_index.reconceptualisation | 113 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5088842522 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.04449916 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |