Improved Deep Convolutional Neural Network for Digital Art Image Classification and Identification Article Swipe
In this paper, an enhanced deep convolutional neural network (DCNN) is proposed to address the challenges of accuracy and diversity in digital art image classification. This method significantly improves the feature extraction capability and model generalization performance by introducing an attention mechanism, residual connection and transfer learning. The key improvements include optimized network architecture, use of LeakyReLU activation function and fine-tuning of pre-trained models. Experimental results show that the improved DCNN performs significantly better than traditional DCNN on multiple datasets, especially when processing digital art images with complex styles and abstract forms the classification accuracy and generalization ability are significantly improved. In addition, the model also shows superiority in indicators such as specificity and Cohen's Kappa coefficient, which further verifies the effectiveness of the combination strategy. This enhanced DCNN not only has broad application prospects in the field of digital art but also provides a valuable reference for other image classification tasks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s44196-025-00996-0
- https://link.springer.com/content/pdf/10.1007/s44196-025-00996-0.pdf
- OA Status
- gold
- References
- 18
- OpenAlex ID
- https://openalex.org/W4414850775
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414850775Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s44196-025-00996-0Digital Object Identifier
- Title
-
Improved Deep Convolutional Neural Network for Digital Art Image Classification and IdentificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-06Full publication date if available
- Authors
-
Huidong ZhangList of authors in order
- Landing page
-
https://doi.org/10.1007/s44196-025-00996-0Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s44196-025-00996-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s44196-025-00996-0.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414850775 |
|---|---|
| doi | https://doi.org/10.1007/s44196-025-00996-0 |
| ids.doi | https://doi.org/10.1007/s44196-025-00996-0 |
| ids.openalex | https://openalex.org/W4414850775 |
| fwci | 0.0 |
| type | article |
| title | Improved Deep Convolutional Neural Network for Digital Art Image Classification and Identification |
| biblio.issue | 1 |
| biblio.volume | 18 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12650 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Aesthetic Perception and Analysis |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9879000186920166 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T14254 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.973800003528595 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1704 |
| topics[2].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[2].display_name | Digital Media and Visual Art |
| is_xpac | False |
| apc_list.value | 1390 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1704 |
| apc_paid.value | 1390 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1704 |
| language | en |
| locations[0].id | doi:10.1007/s44196-025-00996-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190680769 |
| locations[0].source.issn | 1875-6883, 1875-6891 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1875-6883 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Computational Intelligence Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s44196-025-00996-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computational Intelligence Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s44196-025-00996-0 |
| locations[1].id | pmh:oai:doaj.org/article:4d6a1e8fea5e4627a15074f298012e80 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Computational Intelligence Systems, Vol 18, Iss 1, Pp 1-17 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/4d6a1e8fea5e4627a15074f298012e80 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085322583 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7845-3331 |
| authorships[0].author.display_name | Huidong Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huidong Zhang |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s44196-025-00996-0.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improved Deep Convolutional Neural Network for Digital Art Image Classification and Identification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12650 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Aesthetic Perception and Analysis |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s44196-025-00996-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190680769 |
| best_oa_location.source.issn | 1875-6883, 1875-6891 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1875-6883 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Computational Intelligence Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44196-025-00996-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computational Intelligence Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s44196-025-00996-0 |
| primary_location.id | doi:10.1007/s44196-025-00996-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190680769 |
| primary_location.source.issn | 1875-6883, 1875-6891 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1875-6883 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Computational Intelligence Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44196-025-00996-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computational Intelligence Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s44196-025-00996-0 |
| publication_date | 2025-10-06 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3092897249, https://openalex.org/W4296177544, https://openalex.org/W4294542659, https://openalex.org/W4389823430, https://openalex.org/W2572559801, https://openalex.org/W3189728456, https://openalex.org/W4392567285, https://openalex.org/W4400482068, https://openalex.org/W4389264040, https://openalex.org/W2996367417, https://openalex.org/W2884675507, https://openalex.org/W3168997536, https://openalex.org/W3004895274, https://openalex.org/W4293527381, https://openalex.org/W4296690332, https://openalex.org/W4381891014, https://openalex.org/W4389263866, https://openalex.org/W4237781669 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 145 |
| abstract_inverted_index.In | 1, 102 |
| abstract_inverted_index.an | 4, 40 |
| abstract_inverted_index.as | 112 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.in | 21, 109, 136 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.of | 17, 56, 62, 123, 139 |
| abstract_inverted_index.on | 78 |
| abstract_inverted_index.to | 13 |
| abstract_inverted_index.The | 48 |
| abstract_inverted_index.and | 19, 34, 45, 60, 90, 96, 114 |
| abstract_inverted_index.are | 99 |
| abstract_inverted_index.art | 23, 85, 141 |
| abstract_inverted_index.but | 142 |
| abstract_inverted_index.for | 148 |
| abstract_inverted_index.has | 132 |
| abstract_inverted_index.key | 49 |
| abstract_inverted_index.not | 130 |
| abstract_inverted_index.the | 15, 30, 69, 93, 104, 121, 124, 137 |
| abstract_inverted_index.use | 55 |
| abstract_inverted_index.DCNN | 71, 77, 129 |
| abstract_inverted_index.This | 26, 127 |
| abstract_inverted_index.also | 106, 143 |
| abstract_inverted_index.deep | 6 |
| abstract_inverted_index.only | 131 |
| abstract_inverted_index.show | 67 |
| abstract_inverted_index.such | 111 |
| abstract_inverted_index.than | 75 |
| abstract_inverted_index.that | 68 |
| abstract_inverted_index.this | 2 |
| abstract_inverted_index.when | 82 |
| abstract_inverted_index.with | 87 |
| abstract_inverted_index.Kappa | 116 |
| abstract_inverted_index.broad | 133 |
| abstract_inverted_index.field | 138 |
| abstract_inverted_index.forms | 92 |
| abstract_inverted_index.image | 24, 150 |
| abstract_inverted_index.model | 35, 105 |
| abstract_inverted_index.other | 149 |
| abstract_inverted_index.shows | 107 |
| abstract_inverted_index.which | 118 |
| abstract_inverted_index.(DCNN) | 10 |
| abstract_inverted_index.better | 74 |
| abstract_inverted_index.images | 86 |
| abstract_inverted_index.method | 27 |
| abstract_inverted_index.neural | 8 |
| abstract_inverted_index.paper, | 3 |
| abstract_inverted_index.styles | 89 |
| abstract_inverted_index.tasks. | 152 |
| abstract_inverted_index.Cohen's | 115 |
| abstract_inverted_index.ability | 98 |
| abstract_inverted_index.address | 14 |
| abstract_inverted_index.complex | 88 |
| abstract_inverted_index.digital | 22, 84, 140 |
| abstract_inverted_index.feature | 31 |
| abstract_inverted_index.further | 119 |
| abstract_inverted_index.include | 51 |
| abstract_inverted_index.models. | 64 |
| abstract_inverted_index.network | 9, 53 |
| abstract_inverted_index.results | 66 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.abstract | 91 |
| abstract_inverted_index.accuracy | 18, 95 |
| abstract_inverted_index.enhanced | 5, 128 |
| abstract_inverted_index.function | 59 |
| abstract_inverted_index.improved | 70 |
| abstract_inverted_index.improves | 29 |
| abstract_inverted_index.multiple | 79 |
| abstract_inverted_index.performs | 72 |
| abstract_inverted_index.proposed | 12 |
| abstract_inverted_index.provides | 144 |
| abstract_inverted_index.residual | 43 |
| abstract_inverted_index.transfer | 46 |
| abstract_inverted_index.valuable | 146 |
| abstract_inverted_index.verifies | 120 |
| abstract_inverted_index.LeakyReLU | 57 |
| abstract_inverted_index.addition, | 103 |
| abstract_inverted_index.attention | 41 |
| abstract_inverted_index.datasets, | 80 |
| abstract_inverted_index.diversity | 20 |
| abstract_inverted_index.improved. | 101 |
| abstract_inverted_index.learning. | 47 |
| abstract_inverted_index.optimized | 52 |
| abstract_inverted_index.prospects | 135 |
| abstract_inverted_index.reference | 147 |
| abstract_inverted_index.strategy. | 126 |
| abstract_inverted_index.activation | 58 |
| abstract_inverted_index.capability | 33 |
| abstract_inverted_index.challenges | 16 |
| abstract_inverted_index.connection | 44 |
| abstract_inverted_index.especially | 81 |
| abstract_inverted_index.extraction | 32 |
| abstract_inverted_index.indicators | 110 |
| abstract_inverted_index.mechanism, | 42 |
| abstract_inverted_index.processing | 83 |
| abstract_inverted_index.application | 134 |
| abstract_inverted_index.combination | 125 |
| abstract_inverted_index.fine-tuning | 61 |
| abstract_inverted_index.introducing | 39 |
| abstract_inverted_index.performance | 37 |
| abstract_inverted_index.pre-trained | 63 |
| abstract_inverted_index.specificity | 113 |
| abstract_inverted_index.superiority | 108 |
| abstract_inverted_index.traditional | 76 |
| abstract_inverted_index.Experimental | 65 |
| abstract_inverted_index.coefficient, | 117 |
| abstract_inverted_index.improvements | 50 |
| abstract_inverted_index.architecture, | 54 |
| abstract_inverted_index.convolutional | 7 |
| abstract_inverted_index.effectiveness | 122 |
| abstract_inverted_index.significantly | 28, 73, 100 |
| abstract_inverted_index.classification | 94, 151 |
| abstract_inverted_index.generalization | 36, 97 |
| abstract_inverted_index.classification. | 25 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5085322583 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.49374571 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |