Improved model MASW YOLO for small target detection in UAV images based on YOLOv8 Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-10428-w
The present paper proposes an algorithmic model, MASW-YOLO, that improves YOLOv8n. This model aims to address the problems of small targets, missed detection, and misdetection of UAV viewpoint feature detection targets. The backbone network structure is enhanced by incorporating a multi-scale convolutional MSCA attention mechanism, which introduces a deep convolution process to aggregate local information. This method aims to increase small-target detection accuracy. Concurrently, the neck network structure is reconstructed, with the fusion effect of multi-scale weakening of non-adjacent levels addressed by using an AFPN progressive pyramid network to replace the PANFPN structure of the base model. The MSCA and AFPN form a multiscale feature synergy mechanism, whereby the response values of MSCA become inputs to AFPN, and the multiscale integration of AFPN further amplifies the advantages of MSCA. The use of flexible non-maximum suppression Soft-NMS is chosen to replace the non-maximum suppression NMS to improve the model's detection of occlusion and dense targets. The loss function of the model is optimised through the implementation of Wise-IoU, which serves as a replacement for the loss function of the baseline model, thereby enhancing the accuracy of bounding box regression, especially perform better when the target deformation or scale change is large. Experiments conducted on the VisDrone2019 dataset demonstrate that the average detection accuracy of the MASW-YOLO algorithm is 38.3%, which is augmented by 7.9% through the utilisation of the original YOLOv8n network. Furthermore, the number of network parameters is reduced by 19.6%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-10428-w
- https://www.nature.com/articles/s41598-025-10428-w.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412188663
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412188663Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-10428-wDigital Object Identifier
- Title
-
Improved model MASW YOLO for small target detection in UAV images based on YOLOv8Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-11Full publication date if available
- Authors
-
Xianghe Meng, Fei Yuan, Dexiang ZhangList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-10428-wPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-10428-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-10428-w.pdfDirect OA link when available
- Concepts
-
Computer science, Remote sensing, Geology, Computer vision, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412188663 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-10428-w |
| ids.doi | https://doi.org/10.1038/s41598-025-10428-w |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40646143 |
| ids.openalex | https://openalex.org/W4412188663 |
| fwci | 6.92871482 |
| type | article |
| title | Improved model MASW YOLO for small target detection in UAV images based on YOLOv8 |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 25027 |
| biblio.first_page | 25027 |
| topics[0].id | https://openalex.org/T12389 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Infrared Target Detection Methodologies |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T12111 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5588417053222656 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5562870502471924 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C127313418 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4395718574523926 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[2].display_name | Geology |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3879518508911133 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3528992533683777 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5588417053222656 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.5562870502471924 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/geology |
| keywords[2].score | 0.4395718574523926 |
| keywords[2].display_name | Geology |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.3879518508911133 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3528992533683777 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-10428-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-10428-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-10428-w |
| locations[1].id | pmid:40646143 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40646143 |
| locations[2].id | pmh:oai:doaj.org/article:c152ac7e3a6e47cbac9c52ca6266e41b |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-18 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/c152ac7e3a6e47cbac9c52ca6266e41b |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12254372 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12254372 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101447538 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1185-2201 |
| authorships[0].author.display_name | Xianghe Meng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China. |
| authorships[0].institutions[0].id | https://openalex.org/I143868143 |
| authorships[0].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xianghe Meng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China. |
| authorships[1].author.id | https://openalex.org/A5100698601 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8614-8756 |
| authorships[1].author.display_name | Fei Yuan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210156404 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China. |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210156404 |
| authorships[1].institutions[1].ror | https://ror.org/04r53se39 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210156404 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Institute of Information Engineering |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fei Yuan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China. |
| authorships[2].author.id | https://openalex.org/A5069860925 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-7144-3761 |
| authorships[2].author.display_name | Dexiang Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China. [email protected]. |
| authorships[2].institutions[0].id | https://openalex.org/I143868143 |
| authorships[2].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dexiang Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Electrical Engineering and Automation, Anhui University, Hefei, 230601, China. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-10428-w.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improved model MASW YOLO for small target detection in UAV images based on YOLOv8 |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12389 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Infrared Target Detection Methodologies |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-10428-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-10428-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-10428-w |
| primary_location.id | doi:10.1038/s41598-025-10428-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-10428-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-10428-w |
| publication_date | 2025-07-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3008115128, https://openalex.org/W2193145675, https://openalex.org/W3179888767, https://openalex.org/W4398176426, https://openalex.org/W4400037448, https://openalex.org/W2964121718, https://openalex.org/W4385839827, https://openalex.org/W4392337325, https://openalex.org/W4316468140, https://openalex.org/W2886904239, https://openalex.org/W4324116440, https://openalex.org/W4399310768, https://openalex.org/W4396222530, https://openalex.org/W4402865423, https://openalex.org/W4409504221, https://openalex.org/W3210586215, https://openalex.org/W4403888247, https://openalex.org/W4406127891, https://openalex.org/W4406806191, https://openalex.org/W4408101910, https://openalex.org/W4405269966, https://openalex.org/W4385812260, https://openalex.org/W4400443459, https://openalex.org/W4391307079, https://openalex.org/W4405284009, https://openalex.org/W4398145484, https://openalex.org/W4396576812, https://openalex.org/W3194790201, https://openalex.org/W4399806833, https://openalex.org/W3205100603, https://openalex.org/W4386076325, https://openalex.org/W4407844893, https://openalex.org/W4407750276, https://openalex.org/W4407571315, https://openalex.org/W4405999727, https://openalex.org/W3106250896 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 39, 47, 102, 170 |
| abstract_inverted_index.an | 4, 83 |
| abstract_inverted_index.as | 169 |
| abstract_inverted_index.by | 37, 81, 221, 239 |
| abstract_inverted_index.is | 35, 68, 136, 160, 198, 216, 219, 237 |
| abstract_inverted_index.of | 18, 25, 74, 77, 93, 111, 121, 127, 131, 149, 157, 165, 176, 184, 212, 226, 234 |
| abstract_inverted_index.on | 202 |
| abstract_inverted_index.or | 195 |
| abstract_inverted_index.to | 14, 51, 58, 88, 115, 138, 144 |
| abstract_inverted_index.NMS | 143 |
| abstract_inverted_index.The | 0, 31, 97, 129, 154 |
| abstract_inverted_index.UAV | 26 |
| abstract_inverted_index.and | 23, 99, 117, 151 |
| abstract_inverted_index.box | 186 |
| abstract_inverted_index.for | 172 |
| abstract_inverted_index.the | 16, 64, 71, 90, 94, 108, 118, 125, 140, 146, 158, 163, 173, 177, 182, 192, 203, 208, 213, 224, 227, 232 |
| abstract_inverted_index.use | 130 |
| abstract_inverted_index.7.9% | 222 |
| abstract_inverted_index.AFPN | 84, 100, 122 |
| abstract_inverted_index.MSCA | 42, 98, 112 |
| abstract_inverted_index.This | 11, 55 |
| abstract_inverted_index.aims | 13, 57 |
| abstract_inverted_index.base | 95 |
| abstract_inverted_index.deep | 48 |
| abstract_inverted_index.form | 101 |
| abstract_inverted_index.loss | 155, 174 |
| abstract_inverted_index.neck | 65 |
| abstract_inverted_index.that | 8, 207 |
| abstract_inverted_index.when | 191 |
| abstract_inverted_index.with | 70 |
| abstract_inverted_index.AFPN, | 116 |
| abstract_inverted_index.MSCA. | 128 |
| abstract_inverted_index.dense | 152 |
| abstract_inverted_index.local | 53 |
| abstract_inverted_index.model | 12, 159 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.scale | 196 |
| abstract_inverted_index.small | 19 |
| abstract_inverted_index.using | 82 |
| abstract_inverted_index.which | 45, 167, 218 |
| abstract_inverted_index.19.6%. | 240 |
| abstract_inverted_index.38.3%, | 217 |
| abstract_inverted_index.PANFPN | 91 |
| abstract_inverted_index.become | 113 |
| abstract_inverted_index.better | 190 |
| abstract_inverted_index.change | 197 |
| abstract_inverted_index.chosen | 137 |
| abstract_inverted_index.effect | 73 |
| abstract_inverted_index.fusion | 72 |
| abstract_inverted_index.inputs | 114 |
| abstract_inverted_index.large. | 199 |
| abstract_inverted_index.levels | 79 |
| abstract_inverted_index.method | 56 |
| abstract_inverted_index.missed | 21 |
| abstract_inverted_index.model, | 6, 179 |
| abstract_inverted_index.model. | 96 |
| abstract_inverted_index.number | 233 |
| abstract_inverted_index.serves | 168 |
| abstract_inverted_index.target | 193 |
| abstract_inverted_index.values | 110 |
| abstract_inverted_index.YOLOv8n | 229 |
| abstract_inverted_index.address | 15 |
| abstract_inverted_index.average | 209 |
| abstract_inverted_index.dataset | 205 |
| abstract_inverted_index.feature | 28, 104 |
| abstract_inverted_index.further | 123 |
| abstract_inverted_index.improve | 145 |
| abstract_inverted_index.model's | 147 |
| abstract_inverted_index.network | 33, 66, 87, 235 |
| abstract_inverted_index.perform | 189 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.process | 50 |
| abstract_inverted_index.pyramid | 86 |
| abstract_inverted_index.reduced | 238 |
| abstract_inverted_index.replace | 89, 139 |
| abstract_inverted_index.synergy | 105 |
| abstract_inverted_index.thereby | 180 |
| abstract_inverted_index.through | 162, 223 |
| abstract_inverted_index.whereby | 107 |
| abstract_inverted_index.Soft-NMS | 135 |
| abstract_inverted_index.YOLOv8n. | 10 |
| abstract_inverted_index.accuracy | 183, 211 |
| abstract_inverted_index.backbone | 32 |
| abstract_inverted_index.baseline | 178 |
| abstract_inverted_index.bounding | 185 |
| abstract_inverted_index.enhanced | 36 |
| abstract_inverted_index.flexible | 132 |
| abstract_inverted_index.function | 156, 175 |
| abstract_inverted_index.improves | 9 |
| abstract_inverted_index.increase | 59 |
| abstract_inverted_index.network. | 230 |
| abstract_inverted_index.original | 228 |
| abstract_inverted_index.problems | 17 |
| abstract_inverted_index.proposes | 3 |
| abstract_inverted_index.response | 109 |
| abstract_inverted_index.targets, | 20 |
| abstract_inverted_index.targets. | 30, 153 |
| abstract_inverted_index.MASW-YOLO | 214 |
| abstract_inverted_index.Wise-IoU, | 166 |
| abstract_inverted_index.accuracy. | 62 |
| abstract_inverted_index.addressed | 80 |
| abstract_inverted_index.aggregate | 52 |
| abstract_inverted_index.algorithm | 215 |
| abstract_inverted_index.amplifies | 124 |
| abstract_inverted_index.attention | 43 |
| abstract_inverted_index.augmented | 220 |
| abstract_inverted_index.conducted | 201 |
| abstract_inverted_index.detection | 29, 61, 148, 210 |
| abstract_inverted_index.enhancing | 181 |
| abstract_inverted_index.occlusion | 150 |
| abstract_inverted_index.optimised | 161 |
| abstract_inverted_index.structure | 34, 67, 92 |
| abstract_inverted_index.viewpoint | 27 |
| abstract_inverted_index.weakening | 76 |
| abstract_inverted_index.MASW-YOLO, | 7 |
| abstract_inverted_index.advantages | 126 |
| abstract_inverted_index.detection, | 22 |
| abstract_inverted_index.especially | 188 |
| abstract_inverted_index.introduces | 46 |
| abstract_inverted_index.mechanism, | 44, 106 |
| abstract_inverted_index.multiscale | 103, 119 |
| abstract_inverted_index.parameters | 236 |
| abstract_inverted_index.Experiments | 200 |
| abstract_inverted_index.algorithmic | 5 |
| abstract_inverted_index.convolution | 49 |
| abstract_inverted_index.deformation | 194 |
| abstract_inverted_index.demonstrate | 206 |
| abstract_inverted_index.integration | 120 |
| abstract_inverted_index.multi-scale | 40, 75 |
| abstract_inverted_index.non-maximum | 133, 141 |
| abstract_inverted_index.progressive | 85 |
| abstract_inverted_index.regression, | 187 |
| abstract_inverted_index.replacement | 171 |
| abstract_inverted_index.suppression | 134, 142 |
| abstract_inverted_index.utilisation | 225 |
| abstract_inverted_index.Furthermore, | 231 |
| abstract_inverted_index.VisDrone2019 | 204 |
| abstract_inverted_index.information. | 54 |
| abstract_inverted_index.misdetection | 24 |
| abstract_inverted_index.non-adjacent | 78 |
| abstract_inverted_index.small-target | 60 |
| abstract_inverted_index.Concurrently, | 63 |
| abstract_inverted_index.convolutional | 41 |
| abstract_inverted_index.incorporating | 38 |
| abstract_inverted_index.implementation | 164 |
| abstract_inverted_index.reconstructed, | 69 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.94119792 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |