Improved Multilayer Perceptron Neural Networks Weights and Biases Based on The Grasshopper optimization Algorithm to Predict Student Performance on Ambient Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1145/3583788.3583797
The classification accuracy of a multi-layer Perceptron Neural Networks depends on the selection of its parameters such the connection weights and biases. Generating an optimal value of these parameters requires a suitable algorithm to train the multilayer perceptron neural networks. This paper presents swam based Grasshopper optimization algorithm that optimizes the connection weights and biases of Multilayer Perceptron Neural Network. Grasshopper optimization algorithm is a swarm-based metaheuristic algorithm applied for accurate learning of Multilayer Perceptron Neural Networks. The proposed Multilayer Layer Perceptron Neural Networks based on the Grasshopper Optimization Algorithm was validated using a Genetic algorithm and Backpropagation algorithm this algorithm has proved to perform satisfactorily performance by escaping local optimal and its fast convergence.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3583788.3583797
- https://dl.acm.org/doi/pdf/10.1145/3583788.3583797
- OA Status
- gold
- Cited By
- 4
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379352342
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379352342Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3583788.3583797Digital Object Identifier
- Title
-
Improved Multilayer Perceptron Neural Networks Weights and Biases Based on The Grasshopper optimization Algorithm to Predict Student Performance on Ambient LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-05Full publication date if available
- Authors
-
Mercy K. Michira, Richard Rimiru, Waweru MwangiList of authors in order
- Landing page
-
https://doi.org/10.1145/3583788.3583797Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3583788.3583797Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3583788.3583797Direct OA link when available
- Concepts
-
Perceptron, Artificial neural network, Computer science, Algorithm, Backpropagation, Multilayer perceptron, Artificial intelligence, Genetic algorithm, Convergence (economics), Metaheuristic, Grasshopper, Machine learning, Economic growth, Ecology, Economics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379352342 |
|---|---|
| doi | https://doi.org/10.1145/3583788.3583797 |
| ids.doi | https://doi.org/10.1145/3583788.3583797 |
| ids.openalex | https://openalex.org/W4379352342 |
| fwci | 2.98117112 |
| type | article |
| title | Improved Multilayer Perceptron Neural Networks Weights and Biases Based on The Grasshopper optimization Algorithm to Predict Student Performance on Ambient Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 68 |
| biblio.first_page | 61 |
| topics[0].id | https://openalex.org/T11122 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9912999868392944 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1706 |
| topics[0].subfield.display_name | Computer Science Applications |
| topics[0].display_name | Online Learning and Analytics |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9911999702453613 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9868000149726868 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C60908668 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7766469120979309 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[0].display_name | Perceptron |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7506896257400513 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7438040375709534 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.60325688123703 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C155032097 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5898383855819702 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[4].display_name | Backpropagation |
| concepts[5].id | https://openalex.org/C179717631 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5656982660293579 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2991667 |
| concepts[5].display_name | Multilayer perceptron |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5622473955154419 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C8880873 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4768296778202057 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[7].display_name | Genetic algorithm |
| concepts[8].id | https://openalex.org/C2777303404 |
| concepts[8].level | 2 |
| concepts[8].score | 0.469104140996933 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[8].display_name | Convergence (economics) |
| concepts[9].id | https://openalex.org/C109718341 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46315398812294006 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[9].display_name | Metaheuristic |
| concepts[10].id | https://openalex.org/C2778575915 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4592461585998535 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q18398431 |
| concepts[10].display_name | Grasshopper |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38682135939598083 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C50522688 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[12].display_name | Economic growth |
| concepts[13].id | https://openalex.org/C18903297 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[13].display_name | Ecology |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/perceptron |
| keywords[0].score | 0.7766469120979309 |
| keywords[0].display_name | Perceptron |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.7506896257400513 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7438040375709534 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.60325688123703 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/backpropagation |
| keywords[4].score | 0.5898383855819702 |
| keywords[4].display_name | Backpropagation |
| keywords[5].id | https://openalex.org/keywords/multilayer-perceptron |
| keywords[5].score | 0.5656982660293579 |
| keywords[5].display_name | Multilayer perceptron |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5622473955154419 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[7].score | 0.4768296778202057 |
| keywords[7].display_name | Genetic algorithm |
| keywords[8].id | https://openalex.org/keywords/convergence |
| keywords[8].score | 0.469104140996933 |
| keywords[8].display_name | Convergence (economics) |
| keywords[9].id | https://openalex.org/keywords/metaheuristic |
| keywords[9].score | 0.46315398812294006 |
| keywords[9].display_name | Metaheuristic |
| keywords[10].id | https://openalex.org/keywords/grasshopper |
| keywords[10].score | 0.4592461585998535 |
| keywords[10].display_name | Grasshopper |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.38682135939598083 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1145/3583788.3583797 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3583788.3583797 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2023 The 7th International Conference on Machine Learning and Soft Computing (ICMLSC) |
| locations[0].landing_page_url | https://doi.org/10.1145/3583788.3583797 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5092085779 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7556-5597 |
| authorships[0].author.display_name | Mercy K. Michira |
| authorships[0].countries | KE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I26805570 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing and Information Technology, Jomo Kenyatta university of Agriculture and Technology, Kenya |
| authorships[0].institutions[0].id | https://openalex.org/I26805570 |
| authorships[0].institutions[0].ror | https://ror.org/015h5sy57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I26805570 |
| authorships[0].institutions[0].country_code | KE |
| authorships[0].institutions[0].display_name | Jomo Kenyatta University of Agriculture and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mercy K. Michira |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computing and Information Technology, Jomo Kenyatta university of Agriculture and Technology, Kenya |
| authorships[1].author.id | https://openalex.org/A5051388166 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3190-1007 |
| authorships[1].author.display_name | Richard Rimiru |
| authorships[1].countries | KE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I26805570 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing and Information Technology, Jomo Kenyatta university of Agriculture and Technology, Kenya |
| authorships[1].institutions[0].id | https://openalex.org/I26805570 |
| authorships[1].institutions[0].ror | https://ror.org/015h5sy57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I26805570 |
| authorships[1].institutions[0].country_code | KE |
| authorships[1].institutions[0].display_name | Jomo Kenyatta University of Agriculture and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Richard M. Rimiru |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computing and Information Technology, Jomo Kenyatta university of Agriculture and Technology, Kenya |
| authorships[2].author.id | https://openalex.org/A5065332583 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0278-0851 |
| authorships[2].author.display_name | Waweru Mwangi |
| authorships[2].countries | KE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I26805570 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computing and Information Technology, Jomo Kenyatta university of Agriculture and Technology, Kenya |
| authorships[2].institutions[0].id | https://openalex.org/I26805570 |
| authorships[2].institutions[0].ror | https://ror.org/015h5sy57 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I26805570 |
| authorships[2].institutions[0].country_code | KE |
| authorships[2].institutions[0].display_name | Jomo Kenyatta University of Agriculture and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Waweru R. Mwangi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computing and Information Technology, Jomo Kenyatta university of Agriculture and Technology, Kenya |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3583788.3583797 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improved Multilayer Perceptron Neural Networks Weights and Biases Based on The Grasshopper optimization Algorithm to Predict Student Performance on Ambient Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11122 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9912999868392944 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1706 |
| primary_topic.subfield.display_name | Computer Science Applications |
| primary_topic.display_name | Online Learning and Analytics |
| related_works | https://openalex.org/W2555356437, https://openalex.org/W2417891382, https://openalex.org/W2076543106, https://openalex.org/W2083196709, https://openalex.org/W2019891950, https://openalex.org/W2085842814, https://openalex.org/W2023924986, https://openalex.org/W4286643620, https://openalex.org/W2523437662, https://openalex.org/W4387048144 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3583788.3583797 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3583788.3583797 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | 2023 The 7th International Conference on Machine Learning and Soft Computing (ICMLSC) |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3583788.3583797 |
| primary_location.id | doi:10.1145/3583788.3583797 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3583788.3583797 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2023 The 7th International Conference on Machine Learning and Soft Computing (ICMLSC) |
| primary_location.landing_page_url | https://doi.org/10.1145/3583788.3583797 |
| publication_date | 2023-01-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6752384857, https://openalex.org/W2134313658, https://openalex.org/W2546314413, https://openalex.org/W6607302558, https://openalex.org/W2255539840, https://openalex.org/W2911285567, https://openalex.org/W6727711208, https://openalex.org/W1982378700, https://openalex.org/W2399972537, https://openalex.org/W3011382651, https://openalex.org/W1980480036, https://openalex.org/W2156194072, https://openalex.org/W2021309800, https://openalex.org/W1529965533, https://openalex.org/W2587345921, https://openalex.org/W3107237154, https://openalex.org/W4233520916, https://openalex.org/W3011863796, https://openalex.org/W1788899996, https://openalex.org/W2810602437, https://openalex.org/W2529035713, https://openalex.org/W4300542644 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 4, 30, 64, 93 |
| abstract_inverted_index.an | 23 |
| abstract_inverted_index.by | 107 |
| abstract_inverted_index.is | 63 |
| abstract_inverted_index.of | 3, 13, 26, 55, 72 |
| abstract_inverted_index.on | 10, 85 |
| abstract_inverted_index.to | 33, 103 |
| abstract_inverted_index.The | 0, 77 |
| abstract_inverted_index.and | 20, 53, 96, 111 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.has | 101 |
| abstract_inverted_index.its | 14, 112 |
| abstract_inverted_index.the | 11, 17, 35, 50, 86 |
| abstract_inverted_index.was | 90 |
| abstract_inverted_index.This | 40 |
| abstract_inverted_index.fast | 113 |
| abstract_inverted_index.such | 16 |
| abstract_inverted_index.swam | 43 |
| abstract_inverted_index.that | 48 |
| abstract_inverted_index.this | 99 |
| abstract_inverted_index.Layer | 80 |
| abstract_inverted_index.based | 44, 84 |
| abstract_inverted_index.local | 109 |
| abstract_inverted_index.paper | 41 |
| abstract_inverted_index.these | 27 |
| abstract_inverted_index.train | 34 |
| abstract_inverted_index.using | 92 |
| abstract_inverted_index.value | 25 |
| abstract_inverted_index.Neural | 7, 58, 75, 82 |
| abstract_inverted_index.biases | 54 |
| abstract_inverted_index.neural | 38 |
| abstract_inverted_index.proved | 102 |
| abstract_inverted_index.Genetic | 94 |
| abstract_inverted_index.applied | 68 |
| abstract_inverted_index.biases. | 21 |
| abstract_inverted_index.depends | 9 |
| abstract_inverted_index.optimal | 24, 110 |
| abstract_inverted_index.perform | 104 |
| abstract_inverted_index.weights | 19, 52 |
| abstract_inverted_index.Network. | 59 |
| abstract_inverted_index.Networks | 8, 83 |
| abstract_inverted_index.accuracy | 2 |
| abstract_inverted_index.accurate | 70 |
| abstract_inverted_index.escaping | 108 |
| abstract_inverted_index.learning | 71 |
| abstract_inverted_index.presents | 42 |
| abstract_inverted_index.proposed | 78 |
| abstract_inverted_index.requires | 29 |
| abstract_inverted_index.suitable | 31 |
| abstract_inverted_index.Algorithm | 89 |
| abstract_inverted_index.Networks. | 76 |
| abstract_inverted_index.algorithm | 32, 47, 62, 67, 95, 98, 100 |
| abstract_inverted_index.networks. | 39 |
| abstract_inverted_index.optimizes | 49 |
| abstract_inverted_index.selection | 12 |
| abstract_inverted_index.validated | 91 |
| abstract_inverted_index.Generating | 22 |
| abstract_inverted_index.Multilayer | 56, 73, 79 |
| abstract_inverted_index.Perceptron | 6, 57, 74, 81 |
| abstract_inverted_index.connection | 18, 51 |
| abstract_inverted_index.multilayer | 36 |
| abstract_inverted_index.parameters | 15, 28 |
| abstract_inverted_index.perceptron | 37 |
| abstract_inverted_index.Grasshopper | 45, 60, 87 |
| abstract_inverted_index.multi-layer | 5 |
| abstract_inverted_index.performance | 106 |
| abstract_inverted_index.swarm-based | 65 |
| abstract_inverted_index.Optimization | 88 |
| abstract_inverted_index.convergence. | 114 |
| abstract_inverted_index.optimization | 46, 61 |
| abstract_inverted_index.metaheuristic | 66 |
| abstract_inverted_index.classification | 1 |
| abstract_inverted_index.satisfactorily | 105 |
| abstract_inverted_index.Backpropagation | 97 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.84492539 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |